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Preface

This volume consists of the lecture notes of the Seminar on Mathematical
Analysis corresponding to the period September 2003-June 2004.

The Seminar http://www.us.es/danamate/seminario/indice.htm is
held at the Universities of Malaga and Seville, and it was conceived from
the main idea of inviting relevant researchers from different fields of Math-
ematical Analysis.

This Seminar is possible thanks to the public announcement from the
Junta de Andalucia for the promotion of research activities jointly organized
by different research groups from those belonging to Plan Andaluz de In-
vestigacién. The participating groups are FQM-104 (main researcher: Dr.
Arias de Reyna Martinez), FQM-127 (main researcher: Dr. Dominguez Be-
navides) from the University of Seville, and FQM-210 (main researcher: Dr.
Girela Alvarez) from the University of Malaga.

The Seminar coordinator is Dr. Lopez Acedo. The organizing board is
completed by Dr. Espinola Garcia, Dr. Garcia Vdzquez, Dr. Girela Alvarez,
Dra. Japén Pineda, Dr. Pérez Moreno and Dr. Villa Caro.

PROCEEDINGS, UNIVERSITIES OF MALAGA AND SEVILLE (SPAIN)
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A remark on Carleson measures from H?
to Li(u) for 0<p<g< o

Oscar Blasco *

Abstract

In this note we shall investigate Carleson measures on the closure
of the unit disc D, i.e. finite, positive Borel measures u for which the
formal identity J, : HP — L9(u) exists, for given values of 0 < p <
g < o0, as a bounded operator from the Hardy spaceHP(D) into the
Lebesgue space L7(u).

1 Introduction

These notes contain an extended version of the lecture I presented in
October of 2003 in Mdlaga and they are part of the material in a joint paper
with Hans Jarchow (see [2]).

We are going to work on the open unit disk D = {z € C: [z|] < 1} in
the complex plane, its closure D and the unit circle T = dD. In the sequel,
m will be the Haar measure on T (Borel algebra), so that dm = dt/27 and
dA(z) the normalized area measure. Given a Borel set B C T, we shall often
write | B| instead of m(B). The Lebesgue spaces LP(m) will also be denoted
LP(T), 0 < p < oo. The canonical norm (p-norm if 0 < p < 1) on LP(T) is
-l

Let Z be the collection of half-open intervals in T of the form I = {e®* :
01 <t < 6} where 0 < 0; < 6y < 2m. With each 0 # z € D, we associate
the interval I(z) € T such that |I(z)| = 1 — |z| and z/|z| is the center of
I(z). Let S(z) be the half-open Carleson box over I(z) which has z on its
‘inner arc’; this inner arc and the boundary part ‘to the right’ are supposed
to belong to S(z). For convenience, let us also put I(0) = T, S(0) = D,
and for any I € Z we write S(I) the corresponding Carleson box S(zy) for
zr = |zy|¢; where (; is the center of I and 1 — |z;| = |I|. We shall write

*The author is partially supported by Proyecto BMF2002-04013
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P,(¢) = I—iz—ljfl% for the Poisson kernel. Clearly one has there exists C > 0
such that

XI(z)
T S CP 1)

Let f : D — C be analytic. Foreach 0 <r <1, f,: D — C: 2z — f(rz)
is continuous, analytic on D, and M,(f,r) := ||fr|l[p < coforall0 < p < oo.
The classical Hardy space HP(D) consists of all analytic functions f : D — C
such that || f||gr = sup,.; My(f,r) is finite. Again, we get a Banach space
if 1 <p < oo, and a p-Banach space if 0 < p < 1. The usual Banach space
of bounded analytic functions will be denoted by H>*(D). If 0 < ¢ < p < o0,
then H*(D) — HP(D) «— HY(D) continuously with ‘norm’ one.

Recall that f is in HP(D), for 0 < p < oo, then f*(e*) = ll_IH fr(e®)
exists m-a.e. on T (Fatou’s Theorem). Moreover, an element f* of LP(T) is
generated in this way, and f — f* defines an isometric embedding H?(D) —
LP(T). Its range is the closure HP(T) of the set of polynomials in LP(T).
This leads to the identification of H?P(D) and HP(T), and to the use of HP
as a common symbol.

We shall be investigating Carleson measures on D, i.e. finite, positive
Borel measures  for which the formal identity J, : H? — L9(u) exists, for
given values of 0 < p < ¢ < 00, as a bounded operator from the Hardy space
HP(D) into the Lebesgue space L?(u).

A characterization of measures on D for which J,, is bounded for p < ¢
was obtained by P. Duren, using a modification of the argument given by
L. Carleson in the case p = q.

Theorem 1. (see [5], page 163) Let u be a finite measure on D and let
0<p<g<oo. Then J,: H?(D) — Li(u) is bounded if and only if

up(S(z)) < C-|I(2)|9?  V0#zeD.

Examples of measures where J,, : H?(D) — L%(u) is bounded for p < ¢
had appeared, for instance, in the result due to Hardy-Littlewood (8].

Theorem 2. (see [5], page 87) Let 0 < p < g < oo. Then

(/(1 — [2)?7%1£(2)%dA(2)) T < C| £l (2)
D

for all f € HP(D).
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Another example for such a Carleson measures is given by the embedding
from H! into the Bergman space B2

([ 17PN < CIf 1. 3)
D

Let us remark that (3) can also be shown as a consequence of Hardy
inequality (see [5], page 48).

We shall present here an alternative proof of Duren’s theorem, which
does not use ideas in Carleson approach. We shall see that it is actually
equivalent to the Hardy and Littlewood result in Theorem 2.

When studying Carleson measures is, sometimes, important to consider
not only measures on D but in D. For instance measures concentrated on T,
or measures coming from composition operators. We shall denote pp and
pr the induced measures on D and T.

Let 0 < p,q < 0. A measure x on D is called a (p,q) - Carleson measure
if f — f defines a (linear, bounded) operator

Ty HY(D) — L9(p) .

If pis a (p, q) - Carleson measure then J, : H?(D) — LI(up) : f +— f and
Juy + HP(T) — Li(p1) : f* — f* are well-defined operators.
We first observe that this notion only depends on the ratio p/q.

Lema 1. (see [2]) Let yu be a measure on D and let 0 < p,s,q < co. Then
w s (p, q)-Carleson measure if and only if p is (sp, sq)-Carleson measure.

This says that the case p < ¢ and be reduced to p/g < 1. Our main
theorem then establishes the following characterization.

Theorem 3. Let o be a finite measure on D and let 0 < p < 1. Then the
following statements are equivalent:
(i) Ju: HP(D) — LY(p) is bounded if and only if ur = 0 and

up(S(2)) < C-I(2)]"?  VY0#2zeD.

(i) There exists C > 0 such that

/m> (1= 232 F(2)ldA(z) < Cllf I,

for all f € HP(D).

Direct proofs of (i) and (ii) in Theorem 3 can be found in [5]. The proof
of (i) follows the same steps as the one by p = ¢g. The proof of (ii) uses
factorization, but also it can be achieved by using interpolation (see [6]).
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2 Proof of Theorem 3

We shall make use of a characterization of Carleson measures in terms
of the Poisson kernel. The following lemma is a modification of Lemma 3.3
in [7], see also [1] for a proof.

Lema 2. (see [2]) Let u be a finite measure on D and let 0 < a < 3. Then

sup{up(5(2)), ur(I(2))} < C-[I(2)]*  VO#zeD

if and only if 5
(1 —z[9)7~
sup | ————————du(w) < oc.
‘2|<1/ﬁ |1 — w28 (

Proof of the theorem. (i)= (ii) Consider dup(z) = (1 — |z|)%_2dA(z) and
dut = 0. Clearly

1 1o 1-|z| 19 p 1
uo(S(:)) % (1-lal) [ (1=r)32dr = (=lel) [ 57 = T2 1-pal)s
l2| 0 1-p
Hence 4 is a (p,1)-Carleson measure.
(ii)= (i) Let p be a (p,1)-Carleson measure. Take z € D and f(w) =

W. Hence || f|l, = W and the assumption gives that

1 1
— - 4 <C—— .
Jy s <
Hence an application of Lemma 2 for @ = 1/p and 3 = 2/p shows that
maz{up(S(2)), ur(1(2))}, < C[I(2)'?  VO#z€D.

Let us see that ur =0

Every open set 2 C T is the union of countably many disjoint intervals
I(z) and p < 1, we may conclude that up(Q)P < C - |Q2]. By regularity of
these measures, we even get ur(B)P < C - |B| for all Borel sets B C T.
In particular, ur < m and so dur = Fdm for some F € L'(m). From
Lebesgue differenciation theorem one gets F'(¢) = lim|;_oces ﬁ J; Fdm <
lim7—ocer |[I|V/P~! = 0 m-a.e. This gives ut = 0.

Conversely, by Lemma 2, we assume that

1 |w|?)2-1/p
wup [ (L= lwl?)

d .
lsl<iJp |1 —wz[? u(e) < oo
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Writting f(z) = [p 1—M);dA w) one has
/H_le(Z)ldu(Z) < / /D|1_ - |2dA w))du(z)
= [ 2 waaw
< ¢ [ 1wl u)"rda)
< Clifllp-

3 Compactness of (p,q)-Carleson measures

We say that a measure y on D is a compact (p,q) - Carleson measure if
the formal identity J, : HP(D) — L9(u) exists as a compact operator.
As the boundedness, the condition of compactness only depends on p/q.

Lema 3. (see[2]) Let 0 < p,q,7 < oo be given and let u be a measure on D.
Then p is a compact (p,q)-Carleson measure if and only if  is a compact
(ps, gs)-Carleson measure.

Lema 4. (see [2]) Let p be a finite measure on D and let 0 < o < 3. Then

lim maz{up(S)), ur(I)}

=0
[1l—o 1]
if and only if
. (1— 297
1 R =0.
|ZTT1_/5 |1 — wz|s du(w) =0

We now present the proof of the formulation of compact embeddings.

Theorem 4. Let 0 < p < ¢ < 0o and p a measure on D. Then p is a
compact (p, q)-Carleson measure if and only if ur = 0 and

pp(S(D) _
[ NN

— (= 72)"

(1-rnw)?
Hence || fnllp = 1 for all n € N. By assumption there exists a subsequence

Proof. Take an increasing sequence r,, converging to 1. Put f,(w) =
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fra, convergent in L9(u). Note that since the pointwise limit is zero then

Q-2 )q/p
lim

- T =0.
k—oo Jp |1 — rp, w|24/P Hw)

The proof of the implication is completed by 1nv0k1ng Lemma 4.

Conversely, assume pr = 0 and lim|1|_.0 =0.

Let us show that J,, : HP/9(D) — L'(up) is compact (what is enough
invoking Lemma 3).

Lemma 4 gives that for € > 0 there exists § > 0 such that, for 1—|z| < 6,

/ wd#@) <e.
D

|1 —wz|?

|]|q/p

Same argument as in Theorem 3 implies

L@ < [ [ ll'{ i A

- / ([ 2l fwldaw)

|f (w)](1 = |w)?P~2dA(w)
[w|<1-6

Ce[ 1wl ) aaw)
|lw|>1-6

IN

IN

+

IN

C/ |f (w)(1 = [w)YP~2dA(w) + Ce| f -
[wl<1-8

Let (fn) be a bounded sequence in HP(D). Then (f,) is relatively com-
pact in H(D) and then there exists a subsequence convergent uniformly on
compact sets. This and the previous estimates finish the proof. O

Corollary 5. Suppose that p < r < q. Every (p,q) - Carleson measure is a
compact (p,r) - Carleson measure.

Let X and Y be quasi-Banach spaces with separating duals. Recall that
an operator u : X — Y is completely continuous if limy, ||uz,|ly = 0 holds
for every weak null sequence (z,,) in X.

Theorem 6. Let 0 < p < 1 and p on D be (p, 1) - Carleson measure. Then
Jy : HP(D) — LY(p) is completely continuous.
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Proof. Since ut = 0 then J, is now the formal identity HP(D) — L!(up) :
f— fsince p = pp. Let (f,) be a weak null sequence in HP(D). By con-
tinuity of point evaluations, lim, fo(2) =0V z € D. Also, (f,) is uniformly
integrable in L!(up): given & > 0 there is a § > 0 such that if B C D is
any Borel set with u(B) < & then [g|fn|ldp < € for all n. But f, — 0
pointwise, so that Egorov’s Theorem provides us with a Borel set B C D
such that p(B) < ¢ and lim, fr(2) = 0 uniformly on D\ B. Accordingly,
there is an n. € N such that fD\B |frldp < € for n > n.. We conclude that
lfallzr) < 2€ for all n > ne: (fn) is a null sequence in the Banach space
L (). o

Theorem 7. Let 0 < p < 1, and let p be (p,1)- Carleson measure on D.
Then J, : HP(D) — LY(u) is a weakly compact operator if and only if J,, is
compact.

Proof. Assume J, is weakly compact. The compactness follows essentially
by repeating an argument from the proof of Theorem 6. Let (f,) be a
bounded sequence in HP(D). By Montel’s Theorem, some subsequence of
(fn) converges locally uniformly to some f € H(D). By Fatou’s Lemma,
f is in HP(D). Therefore it suffices to look at a bounded sequence (f,) in
HP(D) which converges to zero pointwise. By hypothesis and since ut = 0,
(fn) is uniformly integrable in L'(u) = L!(up). But f, — 0 pointwise on D.
In combination with Egorov’s Theorem this yields limy, || fallz1¢,) =0. O

4 Applications

We shall use the previous results to analyze embedding between Hardy
and weighted Bergman spaces. Let p : (0,1] — [0,00) be an integrable
function. Let us denote by AP(p) the space of analytic functions in the unit
disc such that

/D F(2)Po(1 — [2])dA(2) < oo.

The case p(t) = t*P~! is usually denoted A%. The reader is referred to
[1] for some results on these spaces.

Theorem 8. Let 0 < p < g < 0o and let p: (0,1] — [0,00) be an integrable
function. Then
(i) HP(D) C A%(p) if and only if

/ p(t)dt < Cs'F".
0
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(i) HP(D) is compactly contained into A4(p) if and only if

s—0

lim SL?‘(/OS p(t)dt) = 0.

In particular, HP C A} if and only if o > % - %.

HP is compactly contained into AL if and only if a > % - %.

Proof. (i) Consider du(z) = p(1 —|z|)dA(z). Using Theorem 1 we have that
the condition for the embedding is that

1
| p=lahdat) =111 [ 1= ndr < cirpe.
S(I) 1-{1]

(ii) Same argument but applying Theorem 4. a
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Subsets of classical Banach spaces failing
the fixed point property
Patrick N. Dowling

Abstract
In this expository note, we consider the classical nonreflexive spaces

co, ¢, L*[0,1] and C[0,1] and try to identify subsets of these spaces
that fail the fixed point property for nonexpansive mappings.

1 Introduction

A large portion of metric fixed point theory revolves around the following

type of problem:
Let K be a closed bounded conver non-empty subset of a Banach space X .
Let T : K — K be a nonezpansive mapping; that is, |Tz — Ty| < ||z — y||
for all z,y € K. Does T have a fized point; that is, does there exist a point
zg € K so that Txy = xo?

If K is a closed bounded convex non-empty subset of a Banach space X
with the property that every nonexpansive mapping 7" : K — K has a fixed
point, then we say that K has the fixed point property. A Banach space
X is said to have the fixed point property if every closed bounded convex
non-empty subset of X has the fixed point property. A Banach space X is
said to have the weak fixed point property if every weakly compact convex
non-empty subset of X has the fixed point property. It is well known that
uniformly convex spaces and, more generally, reflexive Banach spaces with
normal structure have the fixed point property [8]. Also well known is that
Schur spaces and spaces with the uniform Kadec-Klee property have the
weak fixed point property [8]. In particular, the space ¢!, and the Hardy
space H!, have the weak fixed point property but they both fail to have the
fixed point property.

The aim of this short note is to illustrate the difficulties that one encoun-
ters when one tries to determine whether or not a closed bounded convex
non-empty subset of a Banach space has the fixed point property in the
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classical Banach spaces cg, £*, L'[0,1] and C[0, 1], each equipped with their
canonical norm. It is not our intent to be encyclopedic, but rather to focus
on selected examples and short proofs that are key to understanding the
fixed point property in these spaces.

2 The failure of the fixed point property in /!

In ¢!, the Banach space of absolutely summable sequences of real num-
bers, the standard example of a closed bounded convex non-empty subset is
the following

Example 1. Let (e,) denote the canonical unit vector basis of ¢ and define

o0 o0
K= {Ztnen:thOforalan 1, and Ztn=1}.

n=1 n=1

K is clearly a closed bounded conver non-empty subset of {*. Now define

T:K— K by
o0 o0
T (Z tnen> = ZtnenH.
n=1 n=1

It is trivial to check that T is a nonexpansive fized point free mapping on K.

Counterbalancing this example is the fact that ¢!, equipped with it’s
canonical norm, has the weak*-uniform Kadec-Klee property, and hence
closed bounded convex non-empty which are weak* compact have the fixed
point property — in particular, the closed unit ball of ¢! has the fixed point
property [8]. Therefore a closed bounded convex non-empty subset of ¢! may
fail the fixed point property, but it will be contained in a closed bounded
convex superset (for example, a multiple of the unit ball of 1) that has the
fixed point property.

The most important feature to note about the set K in Example 1, is
that the sequence (e, ), consisting of the unit vector basis elements of ¢1, lies
in K, and this sequence converges weak* to 0, which is not in K. Of course,
this means that K is not weak* (sequentially) compact. Roughly speaking,
all closed bounded convex non-weak* compact subsets of ¢! exhibit the type
of behavior seen in Example 1. To make this statement more specific, we
need a theorem of Dowling, Lennard and Turett [3].
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Theorem 2. Let X be a Banach space with a norm || - ||, and let K be a
closed bounded convexr subset of X. Let (e,) be a null sequence in (0,1). If
K contains a sequence (xy,) such that

oo
Z thTn

n=1

S (1 - 5n)1tn| <

n=1

<30+ el

n=1

for all (t,) € £}, then K contains a closed convex subset C such that there is
a nonezxpansive affine mapping T : C — C which fails to have a fized point
in C.

Remark 3. The sequence (zn) in Theorem 2 is often refereed to as an
asymptotically isometric {1 -basic sequence. The reason for this is because
(zn) is equivalent to the unit vector basis of £! (in particular, (x,) is equiv-
alent to the sequence (e,) in Ezample 1) with the equivalence constants ap-
proach 1 as n — oo.

It is proved in [2], that if K is a closed bounded convex subset of L[0, 1]
which is not weakly compact, then K contains a sequence such that a trans-
late of this sequence by a certain fixed element of L![0,1] is a multiple of an
asymptotically isometric ¢!-basic sequence. Combining this with Theorem 2,
we obtain the following result.

Corollary 4. If K is a closed bounded convex subset of L[0, 1] which is not
weakly compact, then K contains a closed conver non-empty subset C' such
that there is a nonezpansive affine mapping T : C — C which fails to have
a fized point in C.

This corollary can now be used to characterize weak compactness of
closed bounded convex subsets of L![0,1] (equipped with it’s canonical
norm).

Corollary 5. Let K be a closed bounded convex subset of L'[0,1]. Then the
following are equivalent;

(a) K is weakly compact,

(b) Every closed convex subset of K has the fized point property for con-
tinuous affine self maps,

(c) Every closed convex subset of K has the fized point property for non-
expansive affine self maps.
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Remark 6. The word affine cannot be dropped from Corollary 5 because of
Alspach’s example of a closed bounded convex non-empty subset of L'[0,1]
which is weakly compact but fails the fized point property for nonerpan-
sive mappings (see [1]). The Banach space €' is isometric to a subspace
of L0, 1], so Corollary 5 can be used to characterize weak compactness in
0r. However, in £* compactness and weak compactness are equivalent, so
no Alspach-like examples exist in €. As a result we can easily obtain the
following result.

Corollary 7. A closed bounded convex non-empty subset K of £* is compact
if and only if every closed convexr non-empty subset of K has the fized point
property for nonexpansive self maps.

In summary, if K is a closed bounded convex non-empty subset of ¢!,
then K has the fixed point property if it is weak* compact; if KX is not weak*
compact, then while K may or may not have the fixed point property, it
will have a subset that fails the fixed point property.

3 The failure of the fixed point property in ¢

In ¢y, the Banach space of sequences of real numbers converging to 0,
weakly compact convex non-empty sets have the fixed point property, by
the celebrated result of Maurey [10]. In particular, if (e,) is the canonical
unit vector basis of ¢g, then, since (e,) is a weakly null sequence, the closed
convex hull of the sequence (e,), T0{e, : n > 1}, is weakly compact and so
has the fixed point property. On the other hand, let (s,) is the canonical
summing basis of ¢p; that is, s, = e; + e2+ - - + e,. Note that if we denote
the closed convex hull of (s,,) by K, then

oo
K={Ztnenzlztl2t22t32-~-20}.

n=1

One can easily see that the mapping T': K — K defined by

0 00
T (Z tnen) =e;+ Z tnen+1,
n=1 n=1

is a nonexpansive fixed point free mapping on K. Moreover, if K; is any
subset of ¢y that contains K, then K also fails the fixed point property. To
see this, do the following:
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For all u = (u1,ug,---) € co, let u* = (u},u3,---) be the decreasing
rearrangement of u. First we note that u* € ¢y. Secondly, for each n € N
define u, = uy, A 1. Finally, define T': ¢y — ¢o by

o0
S(u) = (1,0, 10, s, ...) = €1+ Y _ tin€ni1-

n=1

Note that S(u) € K, for all u € ¢y, and the mapping T defined above is
equal to the mapping S, when restricted to K. Therefore, if K; is any subset
of ¢y which contains K as a subset, then the mapping S maps K into Kj.
Since the range of S is contained in K, any fixed point S must be an element
of K. However, S = T on K, so a fixed point of S must also be a fixed point
of T, and since T has no fixed points, neither does S. This example (and
some variants of it) can be found in the paper of Llorens-Fuster and Sims
9]

In many respects, the behavior exhibited by the above example is canon-
ical in ¢g. To see this we first need to define the notion of an asymptotically
isometric co-summing basic sequence.

Definition 8. A sequence (w,) in a Banach space X is an asymptotically
isometric cp-summing basic sequence if there exists a null sequence (e,) in
(0,00) such that

1 oo o0 o0
sup (1+6n) jgntj < ;tnwn SS\;p(l‘f'En) ;tj ,

for all (t,) € coo, the space of finitely non-zero sequences.

Remark 9. If, in the above definition, we let e, = 0 for all n, then the
sequence (wy) is behaving ezactly like the summing basis (sn) in co. The
concept of an asymptotically isometric co-summing basic sequence was in-
troduced by Dowling, Lennard and Turett in [5]. In that paper (which is
quite technical), the authors proved that if K is a closed bounded convexr
non-empty subset of a Banach space X, and K contains an asymptotically
isometric co-summing basic sequence, then K contains a closed bounded con-
vex non-empty subset which fails the fized point property. They also proved
that every closed bounded conver non-empty subset of ¢y (equipped with its
canonical norm) which is not weakly compact contains a sequence which is
a multiple of an asymptotically isometric co-summing basic sequence. Con-
sequently, if K is a closed bounded conver non-weakly compact subset of co,
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then K contains a closed bounded convex non-empty subset that fails the
fized point property. Building on this in a subsequent paper [6], Dowling,
Lennard and Turett proved that if K is a closed bounded conver non-weakly
compact subset of ¢y, then K fails the fized point property. Therefore, by
combining this result with the result of Maurey [10], we obtain the following
complete characterization of the fized point property in cp.

Theorem 10. If K is a closed bounded conver non-empty subset of co,
equipped with its canonical norm, then K has the fized point property if and
only if K 1is weakly compact.

4 The failure of the fixed point property in L'[0, 1]

The well known example of Alspach [1] shows that the Banach space
L0, 1] fails to have the weak fixed point property. In fact, by building on
Alspach’s example, one can show that any subset of L![0, 1] with non-empty
interior fails the fixed point property. Even more can be said: any subset
of L'[0,1] that contains a non-trivial order interval fails the fixed point
property. We will give a proof of this result in the special case of subsets of
L'[0,1] containing the order interval determined by the identically 0 element
and the identically 1 element (the set C below). First, we need to recall some
of the details of Alspach’s construction. Let

C={feL'0,1]:0< f(t) <1, forall t € [0,1]}
and define T : C — C by

min{2f(2t), 1} for0<t<3i

Tf(t)={ ax{2f(2t —1) = 1,0} for i <t<1,

for all feC.

Alspach showed that the mapping T is an isometry on C' which has two
fixed points; namely 0 and X[p ;). The mapping T is an isometric self map of
the closed convex subset Co = {f € C: f[o yf=1 /2} of C, and therefore T'
has no fixed points in Cp since Co contains neither of the points 0 nor X[g 1}

Alspach’s example was modified by R. Sine [11], to produce a fixed point
free nonexpansive mapping on all of C. This modification is achieved as
follows; define S: C — C by S(f) = X(o,1) — f, for all f € C. The mapping
S is clearly an isometry of C onto C. Thus the mapping ST is a nonexpansive
mapping on C. Sine proved that ST is fixed point free on C. Using Sine’s
result we obtain the following result which appears in [4].
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Theorem 11. Let K be a closed bounded convex subset of L'[0,1] which
contains the order interval C = {f € L'[0,1] : 0 < f(t) < 1, forallt €
[0,1]}. Then K fails the fized point property for nonezpansive mappings.

Proof. Define the mapping R: K — K by
Rf(t) = min{|f(t)|,1}, for 0 <t <1, forall f € K.

It is easily seen that R is a nonexpansive mapping on K and R(f) € C for
all f € K. Now define U : K — K by

U(f) = ST(R(f)), for all f € K.

The mapping U is nonexpansive since all of the mappings, R, S, and T are
nonexpansive.

To show that U is fixed point free, suppose that f € K is a fixed point
of U, that is, U(f) = f. Since f € K, R(f) € C, and since ST maps C into
C, f=U(f) = ST(R(f)) € C. Note that the mapping R restricted to C
is the identity on C. Therefore, f = ST(R(f)) = ST(f) and so f is a fixed
point of ST in C. This contradicts Sine’s result that ST has no fixed point
in C [11]. This completes the proof. ]

Remark 12. One should note that even though we stated Theorem 11 for a
closed bounded conver subset K containing the order interval {f € L1[0,1] :
0 < f(t) <1, forallt € [0,1]}, the proof only requires K to contain the
order interval and neither the closedness, boundedness nor convezxity of K
1s used.

The proof of the more general result that any subset of L'[0,1] that con-
tains a non-trivial order interval fails the fized point property, is not difficult
but it is somewhat technical. An improvement of this result (with an even
more technical proof) appears in a recent paper of Dowling, Lennard and
Turett [7], where it is shown that every subset of L'[0,1] that contains the
(non-trivial) intersection of an order interval and a hyperplane fails to have
the fized point property for nonerpansive mappings.

5 The failure of the fixed point property in C|0,1]

Since C[0,1] contains every separable Banach space isometrically, it is
not surprising that very little can be said about the fixed point property for
a general closed bounded convex non-empty subset of C[0,1]. However, we
can obtain a result that looks very similar to the result stated in Theorem 11.
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Our main ingredient is a very slight modification of an example from the
text of Goebel and Kirk [8, page 30]. Let

C={feC[0,1]:0< f(t) <1, forall t € [0,1]}
and define T : C — C by
Tf(t) = min{l,max{0, f(t) + 2t — 1}}, for 0 <t <1,

for all f € C. It is trivial to show that T is nonexpansive. Also, since
T(f)(t) > f(t) for some t > 1/2 or T(f)(t) < f(t) for some t < 1/2, T fails
to have a fixed point.

Theorem 13. Let K be a closed bounded convex subset of C[0,1] which
contains the set C = {f € C[0,1]: 0 < f(t) <1, for allt € [0,1]}. Then K
fails the fized point property for nonexpansive mappings.

Proof. Define the mapping R : K — K by
Rf(t) = min{|f(¢)|,1}, for 0 <t <1, for all f € K.

It is easily seen that R is a nonexpansive mapping on K and R(f) € C for
all f € K. Now define U : K — K by

U(f) = T(R(f)), for all f € K.

The mapping U is nonexpansive since the mappings R and T are nonexpan-
sive.

To show that U is fixed point free, suppose that f € K is a fixed point
of U, that is, U(f) = f. Since f € K, R(f) € C, and since T maps C into
C, f=U(f) = T(R(f)) € C. Note that the mapping R restricted to C is
the identity on C. Therefore, f = T(R(f)) = T(f) and so f is a fixed point
of T in C. This contradicts the fact that T has no fixed point in C' and so
the proof is complete. [m]

Remark 14. Again we note, just as we did after Theorem 11, neither the
boundedness, closedness nor the convezity of K is used in the proof of The-
orem 13.
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Peridic solutions for differential inclusions
in Banach spaces

Jesis Garcia Falset *

Abstract

The purpose of this note is to prove the existence of periodic solu-
tions for certain type of differential inclusions posed in Banach spaces
with the fixed point property for nonexpansive mappings (FPP for
short). In particular, we obtain that the equation

e — Au+ [ul*lu=f in ]0,00[x,

where s > 1, 2 is a bounded open domain of R™ with smooth boundary
and there exists 1 < p < oo such that f(¢,z) is w-periodic (in t) and
f € LP(]0, w[xQ) admits a weak w-periodic solution.

1 Introduction

In this paper we show that if X is a real Banach space with the FPP and
A C X x X is an m-accretive operator on X with D(A) convex, then the
existence of a bounded integral solution on R of the differential inclusion

u'(t) + Au(t) 3 f(t) (1)

where f is w-periodic and f € L},.(0,00,X), is equivalent to the existence

of a w-periodic integral solution of such inclusion (some results of this type
were known see (2], [7],[12] and [13]). Thus, if one wants to know if Problem
1 admits a w-periodic integral solution it will be enough to study if it has
a bounded integral solution. In this sense, we deal with a kind of accretive
operators (see Definition 5 below ) for which it is possible to know when
Problem 1 has a bounded integral solution, this fact allows us to extend
to reflexive Banach spaces with the FPP the well known result of periodic

*Partially supported by by BEM 2003-03893-C02-02
2000 Mathematics Subject Classification. 34A60, 34C25, 34C27, 47TH10
Key words and phrases. Integral solutions, periodic solutions, Accretive operators,
nonexpansive mappings, fixed points
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solutions for maximal monotonous operators on a Hilbert space (see [7]).
Moreover, using these results we obtain the existence of periodic solutions
of the problem

ug — Au+ [u|*lu= f, on ]0,00[xQ,

u(t,z) =0, on [0,00[x09,

where Q is a bounded open domain in R™ with smooth boundary 02, f(t, z)
is a given LP-function on ]0,w[x(, 1 < p < oo, periodic in t with period w,
and a > 1.

2 Preliminaries

Throughout this note we assume that X is a real Banach space, denote by
By its closed unit ball, by X* the dual space of X, and by 2% the collection
of subsets of X. A mapping A : X — 2% will be called an operator on X.
The domain of A is denoted by D(A) and its range by R(A). We define the
normalized duality mapping by

J(2) = {j € X*: (z,4) = l|=|*, lljll = llz}-

Let (y, z)4 := max{(y,J) : j € J(2)}.

An operator A on X is accretive if and only if (u — v,z — y)4+ > 0 for all
z,y € D(A) and for each u € A(z), v € A(y). If in addition R(I + \A) is
precisely X for all A > 0, then A is said to be m- accretive. Accretive oper-
ators were introduced by F.E. Browder (8] and T. Kato [14] independently
(we refer the reader to [3],[6], [9] for background material on accretivity).

Let X be a Banach space, let A : D(A) — 2% be an m-accretive operator

and f € L} (0,00, X). If we consider the following initial value problem:

u'(t) + Au(t)) 5 £(t)
(2)
u(0) = zo

We say that a continuous function u : [0, +00[— X is a integral solution
of (2) if u(0) = zp and moreover the inequality

t
llu(t) = |® = Jlu(s) — z|* < 2/ (£(r) =y u(r) — z)4dr,

holds whenever 0 < s < t, and (z,y) € A.
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It is well known that the Problem 2 has a unique integral solution for
each xo € D(A). This concept of solution was introduced by Bénilan in [4]
and perhaps one of the most important results involving integral solution is:

Theorem 1. Let X be a Banach space and let A be m-accretive operator
on X. Then:
(a) For every x € D(A), the initial-value problem v’ + Au > f, u(0) = z,
has a unique integral solution u : [0, +0o[— D(A) whenever f € L} _ (0,00, X).
(b) If u and v are integral solutions of, respectively, u' + Au > f and
v+ Av 3 g on [0,00], then

llu(t) = v = llu(s) = v(s)II? < 2/ (£(r) = g(7),u(r) = v(T)) +dr,

s

for0<s<t.

An integral solution of Problem 2 cannot be interpreted as a solution of
Cauchy problem in a pointwise sense, they are not strong solutions. How-
ever, every strong solution is an integral solution and moreover, under cer-
tain additional assumptions one may obtain more regularity of integral so-
lutions.

We denote by BV,(0,00,X) the subspace formed by those functions
in Llloc(O7 00, X) which are of bounded variation on each compact subset of
[0, 00[. From Theorem 2.2 page 131 and Remark 1 page 133 of [3] we have:

Theorem 2. Let X be a Banach space with Radon-Nikodym property, f €
BV (0,00, X). If u is an integral solution of Problem 2 and zg € D(A).
Then u is a strong solution of this problem.

Finally, if X is a real Banach space, a self-mapping T of a nonempty
subset C of X is said to be a nonexpansive mapping if | Tz —Ty|| < ||z -y,
for all z,y € C.

We say that X has the weak fixed point property (WFPP for short)(resp.
fixed point property (FPP in short)) if for each nonempty weakly compact
convex (resp. bounded, closed, convex) set K C X and each nonexpansive
mapping T : K — K there exists an element z € K such that = Tz.
Of course, both conditions coincide when the Banach space X is reflexive.
It is well known that under nice conditions of geometric type on the norm
of X, the WFPP or the FPP can be guaranteed. Among many others,
uniform convexity, uniform smoothness and normal structure along with
the reflexivity are examples of such conditions (see [10], [11] and references
within).
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3 The main result

We are going to present a result that gives us the relationship between
the existence of bounded integral solution and the existence of a w-periodic
integral solution.

Theorem 3. Let X be a Banach space with the WFPP. If A : D(A) — 2% is
an m-accretive operator such that D(A) is convez and locally weakly compact
and f € L},.(0,00, X) is w-periodic. Then the initial value problem

U (t) + Au(t) 3 f(t)

has a w-periodic integral solution if and only if it has a bounded integral
solution.

Proof. The necessary condition is obvious since a continuous periodic func-
tion is bounded. Conversely we consider z € D(A), then by Theorem 1(a)
the problem

() + Au(t) 3 f(t) w(0) == (3)

has a unique integral solution u : [0, +oo[— D(A).
The structure of the proof follows several steps.
First step. Let us show that v : [0,+0co[— D(A) defined by v(t) =

u(w + t) is the unique integral solution of:

V(t) + Av(t) 5 f(t) v(0) = u(w) (4)

Indeed, given 0 < s < t and (2/,y) € A, by the definition of integral
solution, we have to study if

t
llv(t) = 2’1 = llv(s) — 2'||* < 2/ (f(r) = y,v(r) = 2')dr. (5)

Notice that since u is the integral solution of (3) and v(t) = u(t + w), we
have

t+w
luw + 1) — 2| = lo(s +w) — 2’| < 2 / ) =yl - ) =

t
= 2/ (f(w+7)—y,u(w+7) —a')dr.



SEMINAR OF MATHEMATIC

PROCEEDINGS, UNIVERSITIES OF MALAGA AND SEVILLE (SPAIN)

<
|
=
>
53]
w
o)
A
A
<
o
7]
&~
&
Z
4
j=)
(=]
=
=9
o
=
a
=

SEPTEMBER 2003-JUNE 2004

Now we may use that f is w-periodic and thus we derive that

() — ') — [lu(s) - 2/|12 < 2 / (F(7) = go0(r) — ') ydr.

Which means that v is the integral solution of (4).

Second. We consider the Poincaré mapping P : D(A) — m defined
by Pz = u;(w) where z € D(A) and u, is the integral solution of (3). The
mapping P is well defined from the uniqueness of integral solutions for the
Problem 3.

Notice that P is nonexpansive. Let z,y € D(A), then by Theorem 1 (b)

1Pz — Py||* = ||uz (w) — uy(w)||?

< Jluw(0) — u, (0% + 2/ (F(r) = (), ue(7) — uy(7)) 4d7.

t
0
And therefore
Pz — Pyl < |z —yll.

Third. Let us see that there exists a nonempty convex weakly compact
subset C' which is P-invariant.

By hypothesis we know that Problem 1 has a bounded solution ug,.
Consider now the sequence (P"(zg)), by the first step of the proof for each
n € N it is clear that P"(29) = ug,(nw), which means that the sequence
{P"(z0)} is bounded. This allows us to say that

R :=limsup || P"(zo) — zol| < 0.
n—oo
Thus, if we take the subset

C :={x € D(A) N B(xo,2R) : limsup ||P"(xo) — z| < R}.

Clearly, C is convex and weakly compact.
Let us see that C is also P-invariant. Indeed, if y € C then

limsup || P" (o) — Pyl| < limsup | P"~*(z0) — y|| < R,
n—oo n—oo
and moreover,
[Py — zo|| < limsup ||P™(z0) — xo|| + limsup | P*(z0) — Py|| < 2R.
n—oo n—oo

So, since X enjoys the WFPP, P has a fixed point on C. Then there
exists an integral solution u of the problem u + Au > f which satisfies
u(0) = u(w) and again by the first step u is w-periodic. O
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Corollary 4. (i). Let X be a Banach space with the WFPP. If AC X x X
is an m-accretive operator such that D(A) is convez and weakly compact and
f € L}, .(0,00,X) is w-periodic . Then the problem u'(t) + Au(t) 3 f(f)
has an integral w-periodic solution.

(ii). Let X be a Banach space with the FPP. If A C X x X is an
m-accretive operator such that D(A) is conver and f € L}, (0,00, X) is w-
periodic . Then the problem u'(t) + Au(t) 3 f(f) has an integral w-periodic
solution if and only if it has a bounded integral solution.

(iit). Let X be a Banach space with the FPP. If A C X x X 1is an
m-accretive operator such that D(A) is convezr and bounded. Then the
problem u/(t) + Au(t) 3 f(f) has an integral w-periodic solution whenever
f € L},.(0,00,X) and it is w-periodic.

4 Boundedness of solutions

Let X be a Banach space, and let A C X x X be an m-accretive operator
on X such that D(A) is convex and 0 € R(A). If we consider the initial value
problem (2) with f € L(0, 00, X), then the integral solutions of Problem 2
are bounded (see [15]). However, it fails when f € L} (0,00, X).

In this section we are going to introduce a kind of accretive operators for
which it will be possible to know when the initial value Problem 2 admits
bounded integral solutions.

Definition 5. Let X be a Banach space, an accretive operator A C X x X is
said to be coercive if there exist -y : [0, +00[— [0, +-c0[ with lim—.c Y(t) = 00
such that for each (z,y) € A we have that (y,z)+ > v(||z|)]z||.

Example 6. Let H be a Hilbert space. Given a, 3 > 0 we define the follow-
ing operator:
A: H — 2
zllz)|* + Bz, z#0
Alz) = M=l
v (z) { Bx, z=0.

Let us show that A is an m-accretive and coercive operator on H.

If we take 7 : [0, 0o[— [0, 00 such that v(t) = ! + 3 it is easy to see
that (y,z)+ > v(l|lz[)llz|.

To see that A is accretive, it suffices to consider the argument developed
in [13]. Thus the only thing that we have to prove is that R(I + A) = X.
Indeed,

If ||z|| < B by the definition of A it is clear that z € 0 + AO.
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Then we may assume that ||z|| > 8. In this case, define the function:

fi 0,400 — R
t o f(t) =t1+1t0)

Since f is continuous there exists a unique tyo €]0,00[ such that f(tg) =
ll=ll - B

Now it is enough to take z = ﬁ“?ﬁz to see that z = z + Az.

The following result is interesting in order to have a method for obtaining
coercive m-accretive operators.

Proposition 7. Let X be a Banach space if A C X x X is an m-accretive
operator with 0 € AQ. Then, for each a > 0 the new operator By := I + aA
18 coercive.

Proof. Consider (z,y) € B,, then by definition there exists u € Az such
that y = = + au, therefore

)+ = 22 + au,)s.

Since by hypothesis 0 € A0 and A is accretive, it is clear that (u—0,2—-0)4 >
0. Consequently, it is enough to obtain the result to take y(t) = t.
O

Example 8. Let X be a Banach space and consider B : X — X defined by
Bz =z + ﬁh’ then to see that A is an m-accretive and coercive operator
it is enough to apply the above proposition, since it is not difficult to see that

the operator Az = is m-accretive on X.

z
1+l
Remark 9. An important concept of solution of the following initial value

problem
() + Au(t) 3 f(t) u(0)=z9 0<t<T (6)

can be found in page 134 of [3].

Definition 10. A function u € C([0,7], X) is called a weak solution of the
initial value problem (6) if there are sequences (u,) C W1(0,T, X) and
(fa) € LY(0,T, X) such that

() Lun(t) + Aun(t) 3 falt) ae. t€]0,T[,n=1,2,...

(b) limp—00 un(t) = u(t) uniformly on [0, T].

(¢) u(0) = xp and lim, o fn = f in L}(0, T, X).

It is easy to see that if u is a weak solution then it is an integral solution.

Moreover, in page 134 of [3] we can find an important result involving this
kind of solutions:
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Corollary 11. Let X be reflexive and let A C X x X be an m-accretive
operator on X. Then for each xy € D(A), the initial value problem (6) has
a unique weak solution.

As a consequence of the above Remark and Theorem 3 we obtain the
following result.

Corollary 12. Let X be a reflexive Banach space with the F.P.P.. If A :
D(A) — 2% is an m-accretive and coercive operator with D(A) convez and
fe Lioc(O,m,X) 1s w-periodic. Then the initial value problem

u'(t) + Au(t) > f(t) (7
has a w-periodic integral solution.

Proof. By Theorem 3 it will be enough to see that the integral solutions
of (7) are bounded. To see this, consider zgp € D(A) and we take ug, the
unique integral solution of the problem

u'(t) + Au(t)) 3 f(t) t €[0,00]
u(0) = zo.

From Corollary 11 the initial value problem
u'(t) + A(u(t)) > f(t) t€(0,w]
u(0) = zo.

has a unique weak solution and therefore this weak solution will be uz,. This
means that there exist sequences (u,) and (f,) as in Definition 10.

Since f € L}, (0,00, X), we know that M := [i"||f(t)||dt < cc.

On the other hand, Since A is coercive there exists R > 0 such that
(y,z)+ > %Hz” whenever (z,y) € A and ||z| > R.

Let us show that for every n € N and for each z € D(A) the inequality

lltzy (nw)|| < K := max{|luz, (0), R + M + |Az[w + 2|1z},

holds, where |Az| := inf{||u| : u € Az}.
Given € > 0 there exists ng € N such that

w
/ o (®)lldt < M + ¢ and [luny(t) — usy ()] < €, ¥t € [0,u].
0
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If |lun, (t)|| > R for every t € [0,w], since
fro(t) — up, (t) € Auny(t), ae. t€)0,w],
we have that
, M
{fno () = tng (1), o (1))+ 2 —lluno (V)| a-e. ¢ €0, w[.
Therefore, there exists j(t) € Jun,(t) such that
, . M
(fno(t) = tny (), 5(8)) 2 —lluno () a-e. t €]0, w[.

Now using the differentiation rule of Kato , we have

Il fro () no ()] 2 (Fro (), 5(2)) 2 ”uno(t)“%”uno(t)” + %”uno(t)”
a.e. t €]0,w[, therefore
M + €2 [Jung (w)]| = [lung ()] + M

Otherwise, let tg €]0, w( such that ||un,(to)|| < R, if t > to since for each
(z,y) € A we have

t
l[ung (t) = |* < [lung (to) — 21 + 2/t (fro(T) = Yy tng (1) — @) 4dr
0
thus by a variant of Gronwal’s lemma we derive that
t
llung () — Il < R+ ||z +/t [ fno(T) —ylldr < R+ M + e+ |lz|| + [lyllw.
0

Note that the above argument implies that |lug, (w)|| < K.
Suppose now that this has been proved for

{uzo (0)’ Uz (w)v Uzg (211)), -y Uz ((n - l)w)}-
Consider now the following initial value problem
{ u'(t) + A(u(t)) > f(t) t € [0,nw]

u(0) = zo.
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It is clear that uy, is the unique weak solution of the above problem,
then we may argue as before to obtain that there exist sequences (v,) and
(gn) as in Definition 10 and thus, given € > 0 there exists ng € N such that

nw
/ lgno (£)dt < M + ¢
Jw

(n—1
(Notice that this is a consequence of the w-periodicity of f.) Moreover,
[lvng (t) — uzo (B)]] < € Vit € [0, nw].
If ||uny (8)]| > R for all ¢ € [(n — 1)w, nw], then it is easy to see that
lltzo ()| < [luay ((n — Dw)|| < K.

Otherwise, let so €](n — 1)w, nw[ such that |lvn,(s0)|| < R, if s > sp we
can write,

S
Itno(5) = 21 < omg(50) = a1l + [ llgno(7) = wldr
S0
And then
nw
llvne (s)—z|| < ||vno(80)-I||+_/( ) llgno (T)—ylldT < R+M+e+||z||+]lyllw.
n—1)w
Consequently

[tz (nw) || < K.

This means that the sequence {uz,(nw)} is bounded.

Finally, we will show that the function ug,(.) is also bounded. Otherwise
we may find to €jmw, (m + 1)w| satisfying |luz,(to)|| > K + 2M.

As a consequence of the above argument we may assume |lug,(t)|| > R
for all ¢t € [mw, to], however in this case applying the differentiation rule of
Kato, as above, we arrive to

lu@®|l < llu(mw)l + M,
which is a contradiction. O

Corollary 13. Let X be a reflexive Banach space with the FPP and let

A C X x X be an m-accretive and coercive operator on X with D(A) convex.
Then given w > 0 and f € L'(0,w, X) the initial value problem

/() + Au(t) 3 f(t), te€[0,w) (8)

has a weak solution u such that u(0) = u(w).
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Proof. Consider f the w-periodic extension of f to R*. It is clear that
Corollary 12 yields a w-periodic integral solution u of the problem

o' (t) + Au(t) 3 f(t), te0,00].

Therefore by Remark 9, u is a weak solution of the initial value problem
' (t) + Au(t) 3 f(t), te€[0,w]

which satisfies that (0) = u(w). O

Corollary 14 (see [7]). Let H be a real Hilbert space. If A C H x H is
mazimal monotone, coercive and f € L'[0,w], H), then Problem 8 has an
weak solution u such that u(0) = u(w).

Example 15. Let H be a Hilbert space and A the operator of Ezample (6)
and let f € L}, .(0,00,H) be a w-periodic function. Then the differential
inclusion u'(t) + Au(t) 3 f(t) t >0, has a w-periodic integral solution.

If f € BVjc(0,00, H), by Theorem 2, it admits a w-periodic strong so-
lution (see example of [13]).

Example 16. Let X be a reflexive Banach space with the FPP. Then the
differential equation v'(t) + u(t) + % = f(t), t > 0, has a w-periodic
integral solution whenever f € L}, (0,00, X) and moreover it is w-periodic.

If f € BVjpe(0,00,X), by Theorem 2, it admits a w-periodic strong so-

lution.

5 Application

In the last decades, periodic partial differential equations have been the
subject of extensive study (see for example [16] and references within). This
section is concerned with the time periodic solutions of the problem

ug — Du+ |[ul*lu=f, on ]0,00[xQ,
u(t,z) =0, on [0,00[x09, 9)

u(0,z) = ug(x), on

where a > 1,  is a bounded open domain in R™ with smooth boundary 09,
f(t,) is a given LP-function on |0, w[xQ, 1 < p < oo, periodic in ¢t with
period w.
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Given a > 1, let 3, be the following maximal monotone subset of R x R

Ba: R — R
t = Ba(t) = [t|*signo(t),

where, as usual, we denote by signg the following function:

signg: R — R

1 z>0
t +— signo(z)=4 0 z=0
-1, t<0

Given 1 < p < 00, let 8o C LP(€) x LP() be the operator defined by
D(B,) = {u € LP(Q); Jv e LP(Q), such that v(z) € Bo(u(z)) a.e. on Q}

Ba(u) = {v e LP(Q); v(z) € Ba(u(z)) a.e. on Q}

From [5] it is clear that 3, is an m accretive operator on LP().
On the other hand, let B C LP(Q2) x LP(Q?) be the operator defined by

Bu=—-Au Yue D(B)

where D(B) = Wol"’(Q)ﬂW“’(Q). The argument developed in [3] show that
if we define the operator A := B + Ba, where D(A)=D(B)Nn D([fa), then
A is a m-accretive operator on LP((2).

Then the problem ( 9) may be rewritten as

u'(t) + Au(t) = f(t), 0<t< oo,
u(0) = uo.
where u(.) is regarded as a function from [0, oo[ to LP(Q2).

Proposition 17. Let A C LP(Q) x LP(Q2) be the above m-accretive operator.
Then A is coercive in LP(Q).

Proof. First, we will prove that for each u € D(A) the inequality

a-1
llullp < lullp+a—1(p())P@ra-1 (10)
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holds. Indeed, since u € D(A), then u € D(,) and therefore v = |u|*signo(u) €
LP(Q) which means that |u[P® € L1(Q).
Now, since p > 1, a > 1 and 2 is bounded we have that u € LP**~1(Q),

and hence w? € L 7 (), thus using the Holder’s inequality we obtain
that

[t < ([ qup) =575

and this implies the inequality (10). :
Let us show that A is also coercive. Indeed, since 0 = B0, and 0 = 3,(0),
given u € D(A) we have

(Au,u) 4 = (Au— A0,u — 0)4 > 0.
The fact that LP(2) is a uniformly smooth Banach space yields
(Au,u) 1 = (Bu— 0,u — 0) + (Ba(u) — 0,u — 0)
Moreover the normalized duality mapping on LP(f2) has the form

JI(u) = [|ull37lulP~ signo(w).

l—a
Then if we call M = (u(2))?®+e=D  we deduce, from the inequality (10),
that [, [u[P*e"! > [lu]5T* ' M, and consequently, since B is an accretive
operator, we have that

(Au,u)4 > (Balu),u) = IIUIIZ‘p/Q P 2> Jullp P llullpte M = Mullp

Thus, if we define y(t) = Mt® we derive that

(Au, u)r = y([[ullp)lullp

which means that A is coercive. O

Since LP(R2) is a uniformly convex Banach space and A C LP(2) x LP(§2)
is m-accretive then D(A) is convex, which allows us to obtain along with
Proposition 17 and Corollary 12 the following result:

Theorem 18. let Q be a bounded and open domain in R™ with smooth
boundary 0Q2, and let A C LP(2) x LP(Q) with 1 < p < oo, the above m-
accretive operator. Then the initial value problem
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u'(t) + Au(t) = f(t), t€[0,00]
has a w-periodic integral solution whenever f € L}, (0,00, LP(Q)) and it is
w-periodic.

At this point, we would like to remark that following [1] and [5] it is
possible to obtain the same conclusion as above if in Equation (9) we replace
Au by p—Laplacian operator of u. Thus this allows us to compare the above
theorem with the problem solved in [16].

5.1 Remarks.
Checking carefully the proof of Corollary 12 we may relax its hypothesis
in the following sense:

Corollary 19. Let X be a reflerive Banach space with the FPP, if A C
X x X is m-accretive with D(A) convez, f € L},.(0,00,X) is w-periodic
and M = [ ||f(t)||dt. Then the initial value problem

u'(t) + Au(t) 3 f(t)
has a w-periodic integral solution whenever there exists R > 0 such that if
(z,y) € A with |[z|| > R, then (y,z)4+ > X||z||.

Example 20. Let X be a reflexive Banach space with the FPP. Then the
differential equation u'(t) + % = f(t) t > 0, has an integral w-periodic

solution whenever f € L} (0,00,X) and moreover it is w-periodic and
5 o IF®)llde < 1.

As a particular case of this fact, the same conclusion holds when
sup{[lf(®) : t>0} <1
(see [12]).
By using the same argument of [13] it is easy to see that Theorem 2 of
[13] can be generalized in the following way:

Theorem 21 ([13]). Let X be a reflezive Banach space with the FPP. Let
F:R* x X — CV(X) be upper semi continuous, bounding such that for
all (t,z,y) € RY x X x X, (F(t,z) — F(t,y),z — y)+ > 0, and moreover
F(t+w,z) = F(t,z), (w>0). Then the initial value problem

2'(t) + F(t,z(t)) 20 (11)

has a w-periodic strong solution if and only if it has a bounded strong solution
on [0,00].



Where CV(X) denotes the collection non-empty compact convex subsets
of X.

F is bounding if it maps bounded subsets of X into bounded subsets.

F is upper semi-continuous in X if for every o € X and every open set
G with Fzy C G there exists a neighborhood U of zg such that Fo C G for
allz e U.
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Free propagators and Feynman-Kac
propagators

Archil Gulisashvili

Abstract

In this note, backward free propagators associated with transition
probability densities and Feynman-Kac propagators corresponding to
time-dependent families of measures are studied. We are interested
in the following problem: Determine in what form the properties of
backward free propagators are inherited by backward Feynman-Kac
propagators. The inheritance problem is studied in the present note
in the case of the boundedness in L™ and the boundedness in various
spaces of continuous functions.

1 Introduction

Propagators are two-parametric generalizations of semigroups. The term
”propagator “ is not standard. Various other names were used to label these
objects (evolution families, time-inhomogeneous semigroups, etc.) In the
present note, we survey some of the results obtained in [7-11]. We begin
with a general definition of a propagator. Let B be a Banach space, and
denote by L(B, B) the space of all bounded linear operators on B.

Definition 1. A forward propagator on a Banach space B is a two-parametric
family, S = {S(¢,7) € L(B,B) : 0 < 7 <t < oo}, such that S(t,\)S(A,7) =
S(t,7) forall T < A <t,and S(t,t) =1 for all 0 <t < oo.

A backward propagator on B is a two-parametric family of operators,
Q ={Q(r,t) € L(B,B) : 0 < 7 <t < oo}, such that Q(7,t) = Q(7, \)Q(A, t)
forall 7 < A<t and Q(¢t,t) =1 for all 0 < t < o0.

If such a family is defined only for 0 < 7 <t < T where T > 0, then we
will assume that the propagator properties hold for 0 <7 <t < T.

The assumptions in the definition of a forward propagator are called
the flow conditions, while backward propagators satisfy the backward flow
conditions. In this note, we will study backward propagators. This choice
is not discriminating, since there is a simple link between propagators and
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backward propagators. In the case of a finite time-interval [0, 7], forward
and backward propagators are connected by time reversal n(t) = T — t.
For instance, if S(¢,7) with 0 < 7 <t < T is a propagator on B, then
Q(t,7) = S(n(t),n(r)) is a backward propagator on B.

We will say that a backward propagator @ is strongly continuous if for
every ¢ € B, the function (7,t) — Q(7,t)z is continuous. A backward
propagator @ is called uniformly bounded if

1Q(r,)llB-B <M

where M does not depend on 7 and t. If for every compact subset K of the
set 0 < 7 <t < oo we have

lR(r, )~ < Mk

for all (7,t) € K, then Q will be called locally uniformly bounded. A
backward propagator @ is called separately strongly continuous if for every
fixed ¢t and = € B, the function 7 — Q(7,t)z is continuous on [0,¢], and for
every fixed 7 and = € B, the function t — Q(7,t)z is continuous on [r,T] (if
T = oo, then we consider the interval [t, 00) instead of the interval [t,T]).
Similar definitions can be given in the forward case.

The following assertion obtained in [11] shows that the joint strong con-
tinuity and the separate strong continuity of propagators are equivalent in
the presence of the local uniform boundedness:

Theorem 2. For a backward propagator @ on B, the following are equiva-
lent:
(i) The strong continuity.
(i1) The strong separate continuity and the uniform local boundedness.
The same result holds for forward propagators.

A simplest example of a propagator can be obtained from a semigroup
St on a Banach space B. Consider the family of operators given by {S;_r}.
Then it is simultaneously a forward and a backward propagator on B.

2 Backward propagators generated by transition
functions
Various examples of backward propagators arise in the theory of Markov

processes. Let E be a locally compact second countable Hausdorff topolog-
ical space. It is known that E is o-compact and metrisable. We will fix a
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metric p: E X E — [0,00) generating the topology of F, and denote by &
the o-algebra of Borel subsets of E.

Let P(r,x;s,A), where 0 < r < s < oo,z € E, and A € £, be a
transition probability function. This means that the following conditions
hold:

1. For fixed r, s, and A, P is a nonnegative Borel measurable function
on E.

2. For fixed r, s, and z, P is a Borel measure on £.
3. P(r,z;s,E) =1 for all r, s, and z.
4. P(r,x;s,A) = fE P(r,z;u,dy)P(u,y;s,A) for all r < u < s, and A.

Given a transition probability function P, we can define a family of contrac-
tion operators on the space Lg° of bounded Borel functions on E by

{ Y(r,t)f(z) = [ fy)P(r,z;t,dy), 0<T<t<oo
Y(t,t)f(z) = f(z), 0<t< o0

for all z € E and f € L. This family will be called the free backward
propagator associated with P.

Let us fix a non-negative Borel measure m on (E, £) (the reference mea-
sure). We will write dz instead of m(dz), and will always assume that
0 < m(A) < oo for any compact subset A of E having nonempty interior.
By L™ with 1 < r < oo will be denoted Lebesgue spaces with respect to the
measure m. The space of all Borel functions from L will be denoted by L.
If P is a transition probability function, then we will say that P possesses
density p, if there exists a nonnegative function p(r, z; s, y) such that

P(r,a;s,A) = / p(r, %3 8, )y
A

for all A € £. In this case, the free backward propagator Y is defined on the
space L™ by

{ Y(t,7)f(z) = [5 f)p(r,z;t,y)dy, 0 <7<t < o0,
Y(t,6)f(z) = f(z), 0<t< oo

A rich source of transition probability densities is the theory of second
order non-divergence or divergence form parabolic partial differential equa-
tions on R™. If there exists a fundamental solution for such an equation,



then it can be used as a transition density. Numerous results concerning
the existence of fundamental solutions in the case of parabolic equations
with time-dependent coefficients can be found in [4, 5, 12, 14] (see also the
references in these papers). Next we will give some details.
Let us consider the following equation:
Ou

8—+LU"0 (1)

In 1, L stands for the differential operator given by

L= Za,](rx +Zb T.Z‘)—— (2)

1,j=1

SEPTEMBER 2003-JUNE 2004

(non-divergence form), or by

n

Lu:Zaa [a,]Tz +Zb TIO:L‘ 3)

i,j=1
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(divergence form). Let us also consider the final value problem,

d (4)

for equation 1. Solutions to problem 4 with L in the divergence form are
understood in the weak sense. The following results are known:
Non-divergence form. Let L be as in formula 2, and assume that

{@+Lu-—-0 0<7<t<T,

1. The functions a;; and b; are bounded and measurable on [0,T] x R";
2. There exists a constant y > 0 such that for all (7,z) € [0,T] x R™ and
any collection of real numbers A\, -, A,,

n

Z aij (T, T)NiX >VZ’\

j=1 i=1

3. There exists a constant § with 0 < § < 1 such that

n

n
D lasj (1, 21)—aij(r2, 2) [+ [bi(71, 21) =bi(72, 22)| < C(lT1—z2/*+|r1—72|*)
ij=1 i=1

for all (r1,z1), (72,22) € [0,T] x R™.
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Then there exists a unique fundamental solution p(7, z;t,y) of equation 1.
The function p satisfies the following conditions: it is jointly continuous,
strictly positive,

—yl?
alr—uly (%)

p(r it y) < M(t=7) "% exp{——

and

alz —yf?

o (rast, )] < Mt =) exp{~ }. (6)

t—T1

For f € C§°(R™) and t > 0, the function
R e

is in C;‘2([0,t] x R™) and satisfies 4 (see e.g., [4, 5, 12]).
Divergence form. Let L be as in 3, and suppose that conditions 1 and
2 hold for a;; and b;. Then there exists a unique fundamental solution
p(7,z;t,y) of equation 1 satisfying estimate 5 (more information on funda-
mental solutions in the divergence case can be found in [14]).
An important special example of a transition probability density is the
Gaussian density,
2
pe(z) = (2mt)”% exp{-%— :
t
on R". In this case, the frec backward propagator is related to the heat
semigroup,

Sef(x) = f*pi(z), (7)
by the standard formula
Y(Ta t)f = St—rfv (8)

Our next goal is to define and study Feynman-Kac propagators. They
are connected with perturbations of free propagators by time-dependent
functions or measures. We will need some definitions and results from the
theory of Markov processes.

Let Q = El0) denote the space of all paths in E equipped with
the cylindrical o-algebra F, and let P be a transition probability func-
tion. Then there exists a non-terminating non-homogeneous Markov pro-
cess (Xt, F{, Prz), (1,t) € Do, on (2, F) with the phase space (E,£). Here
Xi(w)=w(t), Ff =o(Xs:7<s<t),and Prp, with0<7<Tandz€FE
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is a measure on F such that
P (w(t1) € A1;- -+ sw(tk—1) € Ag—1;w(tk) € Ax)

= P(Tsztl,d-Tl)/ P(tl,xl;tz,dﬂcz)-~-/ P(tg—1,Tr-1; tk, dzg)
A Az A

forall T <t; <te<--- <ty <Tand A; € £ for1 <i< k. We will also use
non-homogeneous Markov processes defined on a general probability space
(Q,F) (see [3, 6, 22]).

The Markov property of the process X follows from the definitions and
can be formulated as follows: Forall0 <7 <s<t<T,r € E,and g € L,

Y(t» S)g(Xs) = E‘r,x(g(Xt”]:;)

P, a.s. We will restrict ourselves to progressively measurable processes.
A process X is called F7-progressively measurable, or simply progressively
measurable, if for every 7 and ¢t with 0 < 7 <t < T, the mapping (s,w) —
w(s) of [r,t] x Q into E is o(Byyy x F{)/E-measurable. It is known that
every left- or right-continuous process is progressively measurable (see [6,
23] for more information concerning progressive measurability of stochastic
processes). We will denote by M the class of all transition probability
functions P such that there exists a progressively measurable process X
corresponding to P. If P € M, then we will always choose a progressively
measurable process X to represent P.
It is known that the condition

t_lsi210+ Pro(p(Xs, Xt) >€) =0

forall0<7<s<t<T,z€EFE,ande >0, or equivalently, the condition

lim P(s,y;t,Ge(y))P(7,2;8,dy) =0 9)
t—s—0+ Jp

where € > 0, z,y € E, Ge(y) = {z € E: p(z,y) > €},and 0 < 7 < s <

t < T, guarantees that P € M (this follows from Theorem 4 in Chapter 1.6

in [6]). The equivalent conditions mentioned above are called the stochastic

continuity conditions for the process X. It is also known that the uniform

stochastic continuity condition for the transition function P,

lim  sup P(s,y;t,Ge(y)) =0
yeE

t—s—0+
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for all € > 0, is stronger than condition 9, and implies the existence of
a process X corresponding to P and such that X is right-continuous and
possesses left-hand limits (see [6], Theorem 2 on p. 75).

The sample paths of progressively measurable processes are Borel mea-
surable functions. Hence, if X is progressively measurable, then the func-
tional

Ay (r,t) = /t V(s, X,)ds (10)

is defined for appropriate Borel functions V on [0,T] x E. Moreover, for all
0 <7<t <T, the random variable Ay (7,t) is F/-measurable.

Definition 3. Let P € M, and let V be a Borel function on [0,T] x E. We
will call the family of linear operators,

t
Y (r09(0) = Brag(X)exp{~ [ V(s,X)ds), 0<T<t<T,

the backward Feynman-Kac propagator associated with P and V.

For a time-dependent measure p, the backward propagator Y, will be
defined in Section 5.

3 Non-autonomous classes of functions and mea-
sures

Let P be a transition probability function from the class M, and assume
that V is a Borel function on the set [0, 7| x E, where T' > 0 is a fixed number,
and p is a family {u(t) : 0 <t < T} of signed measures on (E,€). Consider
the following potential operators:

Ny (r,t,z) = /ZY(T,S)V(S)(I)dS, (r,t) € Dr, z € E, (11)

and .
N(p)(r, t,z) = / Y(7,s)u(s)(z)ds, (r,t) € Dr, z € E. (12)
T
It is assumed in 11 and 12 that the integrals on the right-hand side make
sense. In 12, we also assume that P possesses density p.

Definition 4. Let P € M. Then we say that V belongs to the class 73;,
provided that

sup sup N(|V|)(7,t,z) < co.
(r,t)eDr z€E
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Let V € 75; Then we say that V' belongs to the class ’P}‘, provided that

li N(V)(t,1,x) =
(im, sup N(VI)(E, )

Suppose that P € M possesses density p. Then we say that u belongs
to the class P}, provided that

sup  sup N(|ul)(7,t,z) < 0o
T:(1,t)EDT TEE

Ifpe ’ﬁ;‘", then we say that p belongs to the class Py, provided that

. hm supN(|u|)(T,t z) =0.
T

The classes defined above were studied in [11]. In the case of the heat
semigroup, these classes were introduced in [8, 9].

The following non-standard approximation was considered in [11]:

Definition 5. Let P € M, V € P}, and Vi € Pj for all k > 1. Then we
will say that the sequence V} (-approaches V' provided that

lim  sup sup|N(V —Vi)(7,t,z)] — 0,
k=00 (r tyeDp z€E

and

lim supsupN(|Vk1)(‘r t,z) =0.
t—7—0+ k>1 ¢

If P € M possesses density p, then we will say that a sequence ui € Py,
k > 1, ¢-approaches p1 € P} provided that

lim sup sup|N(p—p)(r,t,z)] — 0,
k—00 (7 tyeDr z€E
and
li N =
,m, supsup (I} (7, 8, 2) = 0.
The next results from [11] explain why this type of approximation is
useful in the theory of Feynman-Kac propagators.

Theorem 6. Let P € M, and let V € ’P} and Vi € ’P} be such that Vj
C-approaches V.. Then

lim sup |[Yy(7,t) = Yy, (7, )||lLzp -1z = 0.
k—o0 (7 tyeDr
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Suppose that P € M possesses density p, and let p € Pk, and uy € P,
be such that py C-approaches p. Then

lim sup ||Yu(7,t) — Yy, (7,t)]lccmoo = 0.
k—o0 (7 t)eDr

Theorem 7. (a) Let P € M and V € P}. Fork >1,0< 7 < T, and
z € FE, put

gk(7,2) = kN(V) (7, min(T + %,T),z).
Then the following conditions hold:
gk € P} (13)
for allk > 1;

lim  sup sup|N(V —gx)(7,t,x)| =0; (14)
k—oo (rt)eDr z€E

and

lim supsup N(|ge])(r.t,z) = 0. (15)
t=7—0+ k>] z€F

(b) Suppose that P € M possesses density p, and let p € Py,. Fork > 1,
0<7<T,andz € FE, put
1
gk(Tyx) = kN (V)(r, min(T + E’T)’$)' (16)

Then conditions 13-15 in part (a) of Lemma 1 hold with u instead of V.

It is clear from theorems 2 and 3 that imposing various restrictions on
the potentials N(V') and N (i), we can get new interesting classes of func-
tions and measures. The following notation will be used in the sequel: the
symbol BC will stand for the space of all bounded continuous functions on
E equipped with the norm

[Ifllc = sup |f ()],
zeE

by Cw will be denoted the space of all continuous functions on E vanishing
at infinity, and by BUC will be denoted the space of bounded uniformly
continuous functions on E. The following classes were introduced in [11]:

Definition 8. We define the function classes P;,c and ’P;u as follows:
VePj ., =Ve P} and N(V)(r,t,-) € BC for all (7,t) € Dr,
VeP;, <V eP; and N(V)(r,t,") € BUC for all (r,t) € Dr.
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Definition 9. We define the class D}’C as follows: A function V € 73;
belongs to this class if there exists exists a sequence Vi € ’P} such that
Vi(t,) € BC for all k > 1 and 0 < t < T, and Vj (-approaches V. The
class D} , is defined similarly. Here we require the condition Vi(t,-) € BUC
forall k > 1and 0 <t <T, and V} (-approaches V.

Remark 10. If P possesses density p, then the classes of time-dependent
measures Py, ., P, . Dry o, and Dy, ,, can be defined similarly.

The next lemma describes the relations between the classes in definitions
4 and 6.

Lemma 11. The following assertions hold:

1. P;.C D}, and Py, . C Dp, ..

2. P;, C D}, and Py, CDf -

3. If Vv e ’P}, and there ezists a sequence Vi € ’P;,C such that Vi ¢-
approaches V', then V € ’P},C. Similarly, if p € Pp,, and there exists a
sequence Vj, € 'P;,C such that Vi (-approaches V', then pu € Py, ..

4. If V € P;, and there exists a sequence Vi € P;,u such that Vi, (-
approaches V', then V € ’P})u. Similarly, if p € Py,, and there exists a
sequence Vi € P}, such that Vi ¢-approaches V, then u € Py, .

The proof of this lemma can be found in [11].

4 The functional A, and the backward propagator
A,

Now we are ready to define the Feynman-Kac propagator Y), for a time-
dependent measure u. First we should determine what functional replaces
functional 10 in the Feynman-Kac formula for Y, with 1 € P},. It is natural
to try to (-approximate u by a sequence of functions g € P;, and prove that
the corresponding sequence of functionals Ay, converges in an appropriate
sense. Then the limit of the sequence Ay, can be a good candidate to replace
Ay . It was shown in [11] that A, exists and satisfies the following condition:

lim sup supEr; sup |Au(7,t) — Ag (7,t)|" =0 17
k—00 1:0<7<T z€E tr<t<T

for every n > 1. In 17, the functions gi are defined by 16. It can be shown

that the functional A, is unique up to equivalence (see [11]). The sufficient

conditions for the existence of A, are: P € M, P possesses density p, and

ne P
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Definition 12. Let P € M be a transition probability function possessing
density p, and let u € P},. Then the family of operators,

Yu(Tvt)g(I) = E‘r,xg(Xt)exp{—Au(Ta t)}v (Tvt) € Dr,

is called the backward Feynman-Kac propagator associated with P and u.

5 The inheritance problem for Feynman-Kac prop-
agators

The free backward propagator Y associated with a transition probability
function P and the backward Feynman-Kac propagators Yy and Y, are
closely connected. Various properties of Y are inherited by Yy and Y, (see
the results below). However, it is interesting to mention that some simple
properties are not inherited. Among such properties is the L'-boundedness.
This was shown in [9] for forward propagators and the space R®. Next
we will describe how to construct such a counterexample in the case of
backward Feynman-Kac propagators and the space R™ with n > 2. Let the
free backward propagator Y be given by 7 with S; defined by 8, and consider
the following function on the space [0, 1] x R™:

1
VI —tln & |z|

It follows from Lemma 7 in [9] that

V(t,z) =

1
VeP; e lim d5=0. 18
/ f—'0+h0<h<1 t \/_\/1—s—hln1 e (18)

Lemma 7 was established in [9] in the case n=3, the general case is similar.
We have

1 1
o [
h0<h<1 t \/_\/1—s—hln1 = 0 VsVt—slnZ
t
2 2 1
< \/_25/2—073
\/flnT 0 \/E
¢
N \/5/ L
i t—s
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as t — 0+. Therefore, it follows from 18 that V € P}.
Now suppose that Yy (7,1) € L(L!,L') for some 7 0 < 7 < 1. Then
Yy (7,1)1 € L™, and hence, the function given by

“Eex"{/ ZmaE

where Bs is a standard Brownian motion in R"™, belongs to the space L.
It follows that the function

1-71 1

(157-(2) =F \/ETilleds

also belongs to L*°. We have

br(@) = /Héds / i 2ms) % exp(— 2=y 4
T 0 \/Elni Rn Y 2s

1-7 1 n
> ¢ —(27rs)‘5ds/ ly|~tdy
o Vslng yilz—yI<Vs

1-7 1 _
/0 Zemlel v

This provides a contradiction to the boundedness of the function ¢.

Hence, we conclude that V € P}, but Yy(r,1) ¢ L(L', L!).
The next results were obtained in [11]. The first theorems concern the
L*-boundedness and the (L% — L7)-smoothing property:

Theorem 13. (a) Let P € M. Then for any V € P}, Yv is a backward
propagator on L.

(b) Suppose that P € M possesses the density p, and let V € ’P}. Then Yy
is a backward propagator on L.

(c) Suppose that P € M possesses the density p, and let p € Py,. Then'Y),
is a backward propagator on L.

Theorem 14. Let 1 < s <00 and 1 < r < s. Then the following are true:
(a) Let Pe M and V € P;. Suppose that the free backward propagator
Y satisfies Y (7,t) € L(Lg, L) for all (1,t) € Dy. Then Yy is a backward
propagator on Lg. If, in addition, Y is uniformly bounded on L} and strongly
continuous on LE, then Yy is a strongly continuous backward propagator on
Lg.
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(b) If P € M possesses the density p, and if Y(r,t) € L(L",L") for all
(r,t) € Dr, then Yy is a backward propagator on L®. If, in addition, Y
s uniformly bounded on L™ and strongly continuous on L*°, then Yy is a
strongly continuous backward propagator on L*.

(¢) Suppose that P € M possesses the density p and let p € Py, If Y (7,t) €
L(L",L") for all0 <7 <t < T, then'Y, is a backward propagator on L*. If
in addition, Y is uniformly bounded on L" and strongly continuous on L°,
then Y, is a strongly continuous backward propagator on L°.

Theorem 15. Let 1 < s < g < o0 and 1 <1 < s. Then the following are
true:

(a) Let P € M and V € P;. Suppose that Y(r,t) € L(L},L;_sq) for all
0<7<t<T. ThenYy(r,t) € L(L,L}) for all0 <7 <t <T.

(b) If P € M possesses the density p, V € P}, and Y (r,t) € L(L", Llpq) for
all0 <7<t <T, then Yy(r,t) € L(L® L9).

(¢) If P € M possesses the density p, u € P, and Y (7,t) € L(L", Llpq) Sfor
all0 <7 <t<T, then Y, (r,t) € L(L®, L9).

The next group of results concerns the inheritance of the boundedness
in the spaces of continuous functions on E.

Definition 16. A backward BC-propagator is called a backward Feller
propagator. A backward C.-propagator is called a backward Feller-Dynkin
propagator. If a backward Lg°-propagator @ is such that Q(7,t) € L(Lg, BC)
for all 0 < 7 <t <T, then it is said that @ satisfies the strong Feller condi-
tion. If a backward L-propagator Q is such that Q(7,t) € L(LZ, BUC) for
all0 < 7 <t <T, then it is said that Q satisfies the strong BU C-condition.

Remark 17. If Q is a backward L*°-propagator, then we may replace the
space L by the space L™ in the definition of the strong Feller and the
strong BU C-condition.

Theorem 18. Let Pe M andV € ’P}. Then the following assertions hold:
(a) IfY satisfies the strong Feller condition, then Yy also satisfies the same
condition.
(b) IfY satisfies the strong BUC-condition, then Yy also satisfies the same
condition.

Theorem 19. Let Pe M,V € P;, and suppose that Y satisfies the strong
Feller condition. Then the following assertions hold:
(a) IfY is a backward Feller-Dynkin propagator, then Yy also has the same
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property.
(b) If Y is a strongly continuous backward Feller-Dynkin propagator, then
Yv also has the same property.

Theorem 20. Let P € M, V € P}, and suppose that Y satisfies the strong
BUC-condition. Then the following assertion holds:

If Y is a strongly continuous backward BUC -propagator, then Yy also has
the same property.

Theorem 21. Let P € M. Then the following assertions hold:

(a) Suppose thatY is a backward strong Feller propagator. Suppose also that
Y is continuous on BC in the topology of uniform convergence on compact
subsets of E. Let V € Pj. Then for every t € (0,T] and any g € L, the
function (1,z) — Yy (7,t)g(x) is continuous on the set [0,t) x R™.

(b) Suppose that'Y is a strongly continuous backward BUC-propagator pos-
sessing the strong BUC-property. Let V € Pi. Then for every t € (0,T)
and any g € LE, the function (1,z) — Y, (7,t)g(x) is continuous on the set
[0,t) x R™.

If we assume that V and p belong to the classes in definitions 5 and 6,
we get stronger results.

Theorem 22. Let P € M and V € D} .. Then the following assertions
hold:

(a) IfY is a backward Feller propagator, then Yy has the same property.
(b) If Y is a backward Feller-Dynkin propagator, then Yy has the same
property. If, in addition, Y is strongly continuous on Cw, then Yy is also
strongly continuous on Coo.

Theorem 23. Let P € M and V € D} . Then if Y is a backward BUC-
propagator, then Yy has the same property. If, in addition, Y is strongly
continuous on BUC, then Yy is also strongly continuous on BUC.

Remark 24. Theorem 10 (Theorem 11) holds for a time-dependent measure
i € D (4 € D), provided that P € M possesses density p.

6 Applications

Let us go back to the case of free backward propagators associated with
fundamental solutions of equation 1 with L in non-divergence form. Let p
be such a fundamental solution. It is not difficult to prove, using estimates 5
and 6, that the backward free propagator Y associated with the density p is
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(L* — L9)-smoothing for all 1 < s < ¢ < 00, and possesses the strong Feller
and the strong BUC-property. It follows that Y is a backward BC- and
BUC-propagator. Moreover, Y is a backward C-propagator (use estimate
5).

The following simple lemma is useful in problems concerning the approx-
imation by backward propagators:

Lemma 25. For every function f € BUC and € > 0, we have

If=Y(@)fllc < sup |[f(@)—F@)+2fllcsup / p(r, 23, y)dy.
p(zy)<e z€E Jy:p(z,y)>e

Using this lemma and Theorem 1, one gets the following assertion (see
[11)):

Lemma 26. Letp be a fundamental function for equation 1 in non-divergence
form. Then the free backward propagator Y associated with p is strongly con-
tinuous on Cy and BUC.

Since the backward free propagator in the example above is (L® — L%)-
smoothing for all 1 < s < ¢ < oo, possesses the strong Feller and the strong
BUC-property, and is a strongly continuous propagator on Cy, and BUC,
the perturbed backward propagator Y, with p € P}, satisfies Y, (7,t) €
L(L*,L9) for all (7,t) € Dr and 1 < s < g < 00, possesses the strong Feller
and the strong BUC-property, and is a strongly continuous propagator on
Cs and BUC (see theorems 3-8).

As in the non-divergence case, the backward free propagator Y in the
divergence case is such that Y (7,t) € L(L° L?) for all (r,t) € Dr and
1 < s < ¢ < oo (this follows from the Gaussian estimate). The strong
Feller property also holds for Y (this follows from the Gaussian estimate
and the continuity of p). Moreover, Y is strongly continuous on C (this
fact can be obtained from the strong Feller property, the Gaussian estimate,
Lemma 3, and the ideas in the proof of part (b) of Theorem 7.6 in [11]).
Hence, using the theorems in Section 5, we see that the perturbed backward
propagator Y, with 4 € Py, satisfies Y, € L(L®, L?) for all (7,t) € D7 and
1 < s < q < oo, possesses the strong Feller property, and is a strongly
continuous backward propagator on Co.

7 Acknowledgements

It is my pleasure to thank Professor Genaro Lépez for inviting me to give
a mini-course on propagators at the Universidad de Sevilla in January, 2004.



SEMINAR OF MATHEMATIC

PROCEEDINGS, UNIVERSITIES OF MALAGA AND SEVILLE (SPAIN)

<
|
=
>
53]
w
o)
A
A
<
o
7]
&~
&
Z
4
j=)
(=]
=
=9
o
=
a
=

SEPTEMBER 2003-JUNE 2004

Part of this work was done during my stay at Centre de Recerca Matematica
(CRM) in Bellaterra, Spain, in November 2003 - April 2004 (Beca de profe-
sores e investigadores extranjeros en régimen de afio sabético del Ministerio
de Educacién, Cultura y Deporte de Espana, referencia SAB2002-0066). I
am very grateful to Professor Lépez, entire Faculty of Mathematics at the
Universidad de Sevilla, and the staff of CRM for their wonderful hospitality.

References

(1]

2]

M. Aizenman and B. Simon, Brownian motion and Harnack’s inequality
for Schrodinger operators, Comm. Pure Appl. Math. 35 (1982), 209-271.

M. Demuth and J. A. van Casteren, Stochastic Spectral Theory for Self-
adjoint Feller Operators. A functional integration approach, Birkhduser
Verlag, Basel, 2000.

E. B. Dynkin, Théorie des processus markoviens, Dunod, Paris, 1963.

S. D. Eidelman, Parabolic equations, Partial Differential Equations VI,
Elliptic and Parabolic Operators, Yu. V. Egorov and M. A. Shubin
(Eds.), Springer-Verlag, Berlin, 1994, p. 203-325.

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice
Hall, Englewood Cliffs, NJ, 1964.

I. I. Gihman and A. V. Skorokhod, The Theory of Stochastic Processes
II, Springer-Verlag, Berlin, 1975.

A. Gulisashvili, Classes of time-dependent measures and the behavior
of Feynman-Kac propagators, C. R. Acad. Sci. Paris, Ser.I 334 (2002),
1-5.

A. Gulisashvili, On the heat equation with a time-dependent singular
potential, J. Funct. Anal. 194 (2002), 17-52.

A. Gulisashvili, Nonautonomous Kato classes of measures and
Feynman-Kac propagators, to be published in Trans. Amer. Math. Soc.

A. Gulisashvili, Nonautonomous Kato classes and the behavior of back-
ward Feynman-Kac propagators, in Analyse stochastique et théorie du
potentiel, Saint Priest de Gimel (2002), Association Laplace-Gauss,
Paris, 2003.



SEMINAR OF MATHEMATICA

PROCEEDINGS, UNIVERSITIES OF MALAGA AND SEVILLE (SPAIN)

<
|
=
>
53]
w
o)
A
A
<
o
7]
&~
&
Z
4
j=)
(=]
=
=9
o
=
a
=

SEPTEMBER 2003-JUNE 2004

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

A. Gulisashvili, Markov processes, classes of time-dependent measures,
and Feynman-Kac propagators, submitted for publication.

A. M. I'in, A. S. Kalashnikov, and O. A. Oleinik, Linear equations of
the second order of parabolic type, Russian Math. Surveyes 17 (1962),
1-143.

G. W. Johnson and M. Lapidus, The Feynman Integral and Feynman’s
Operational Calculus, Clarendon Press, Oxford, 2000.

V. Liskevich and Y. Semenov, Estimates for fundamental solutions of
second-order parabolic equations, J. London Math. Soc. 62 (2000),
521-543.

M. Nagasawa, Stochastic Processes in Quantum Physics, Birkhauser,
Basel, 2000.

E. M. Ouhabaz, P. Stollmann, K.-Th. Sturm, and J. Voigt, The Feller
property for absorption semigroups, J. Funct. Anal. 138 (1996), 351-
378.

Qi Zhang, On a parabolic equation with a singular lower order term,
Transactions Amer. Math. Soc. 348 (1996), 2811-2844.

Qi Zhang, On a parabolic equation with a singular lower order term,
Part 2: The Gaussian bounds, Indiana Univ. Math. J. 46 (1997),
989-1020.

F. Rébiger, A. Rhandi, R. Schnaubelt, and J. Voigt, Non-autonomous
Miyadera perturbation, Differential Integral Equations 13 (2000), 341-
368.1

R. Schnaubelt and J. Voigt, The non-autonomous Kato class, Arch.
Math. 72 (1999), 454-460.

B. Simon, Schréodinger semigroups, Bull. Amer. Math. Soc. 7 (1982),
445-526.

D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Pro-
cesses, Springer, Berlin, 1997.

J. Yeh, Martingales and Stochastic Analysis, World Scientific, Singa-
pore, 1995.



=]
]
@0 o
g 5
S -2
g w g
< D °
=
=z =8
. TS oY
@ Z27 g
0 ]
o gogm<+Q
g ZLZ28z o
° 5 .20 &
T U EE .
P I R
L= E R
£ = o
S ETEE£E
5 <AO <M
<

Y00 ANN[-£00T YATWALIAS

(NIVAS) ATTIASS ANV VOVIVIA O SHILISYTAIN() ‘SONIAIID0dJ < VTIIALS 40 AVAISYIAINA TVIHOLIAT

SISXTVNV TVOLLVINAHIVIN 40 dVNINAS




Survey on operators acting on
distribution spaces of local regularity ()

Silvia I. Hartzstein *

Abstract

This is a survey of Besov and Triebel-Lizorkin spaces of distribu-
tions with local regularity measured by a function v, and integrability
determined by the index p and ¢, and the operators -generalizations
of the classical fractional integral and derivative operators of order a-
acting between spaces of the same scale but of different local regularity.
The underlying geometry is that of homogeneous type spaces and the
moduli of continuity 1 belong to a larger class than the potentials t.
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1 Introduction

The Littlewood-Paley theory provides a unifying approach to the study
of most of the classical functional spaces on R" as, for example, Lebesgue
spaces, Hardy spaces, Sobolev spaces, different kind of Lipschitz spaces and
BMO, together with their traces on subspaces. By means of this theory
all these spaces can be characterized through the action of an appropriate
family of operators. (For an insight on these topics, see, for example [5],
[12], [13], [14] and [15]).

From this unifying approach arise the homogeneous Besov spaces, B,‘,’ 9(RM),
and Triebel-Lizorkin spaces, F;,l 9(R™), whose local regularity is determined
by the potential t* and their integrability by the index p and gq.

More precisely, let ¢ be a function with the following properties:

» € S(R") (1)
suppp C {£ € R": 1/2 < €] <2} 2
() = c>0 if 3/5<]¢]<5/3 ®3)

*Supported by Universidad Nacional del Litoral & Instituto de Matematica del Litoral,
Santa Fe, Argentina
2000 Mathematics Subject Classification. 42B20
Key words and phrases. Fractional Integral operator, Fractional Derivative operator,
Integral operator of functional order, Derivative operator of functional order Calderén-
Zygmund operators, Besov spaces, Triebel-Lizorkin spaces, Spaces of homogeneous type
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Set ¢, = t~"p(t"1z), for t > 0. The Besov space By/(R"), « € R, 1 <
p,q < oo is the family of all f € S§’/P, tempered distributions modulo
polynomials, such that

© Y
Ifllgga = O(tH%*NH7- < oo, 0<p<o00,0<g<oo
[fllggoe = sup (£7le * fllp) < o0, 0<p<oo,
0<t<oo

and interchanging the order of the norms in the above definitions we obtain
the Triebel-Lizorkin space F"?(R™), a € R, 1 < p,q < 00, p # o0,

1

o0 d q
e =1 ([ @ toc 075 oo < .

There is a formula, due to Calderén, closely related to the study of
these spaces. For example, it shows that the definitions of these norms are
independent of the choice of ¢ satisfying (1), (2) and (3). Moreover, it
allows the characterization of all the spaces we mentioned at the beginning
as special cases of the Besov and Triebel-Lizorkin spaces.

There are many versions of this formula, one of its continuous variants
stated as follows:

Calderén’s Reproducing Formula:
Assume that ¢ satisfies (1), (2) and (3). Then there exists a function ¢
satisfying (1) and (2) such that for f € §'/P,

1@ = ["werer N,

where the integral converges in the distribution sense.

Some examples of Littlewood-Paley characterizations obtained by using
the Calderén reproducing formula are the following.
Lebesgue and Hardy spaces satisfy LP ~ F,(,) 2 1< p < oo and, in general,
Hp:F£’2,O<p<oo.
For 0 < a < n, the Lipschitz space A* of complex functions f (modulo
constants), such that there exists a constant C

If(@) = f(y)l < Clz —yl%,

for all  and y € R™, satisfies Ag ~ BE™.
The Sobolev space LZ of tempered distributions (modulus polynomials of
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order at most k — 1) such that all their (weak) derivatives of order k are in
LP satisfies [P ~ EF? 1< p< oo

Finally, if we consider the fractional derivative operator defined through
the Fourier transform by Def f(&) =Culél™f (5), then the fractional Sobolev
space L2 of tempered distributions such that D®f is in LP, satisfies L2 ~
F,, , 1< p<oo.

In the more general setting of spaces of homogeneous type there are nei-
ther convolutions nor Fourier transform. Nevertheless, since an appropriate
family of operators, {Q¢}¢>0, can be constructed in this context, namely,
a collection of operators whose kernels satisfy certain size, smoothness and
moment conditions and the property f0°° Qg% = I on L? Han and Sawyer
in (8], first, (considering a countable family {Dy}recz satisfying the same
features), and, next, Deng and Han in (3] proved reproduction formulae
which allowed them to define Besov and Triebel-Lizorkin spaces on spaces
of homogeneous type, to develop Littlewood- Paley characterizations and to
obtain atomic decompositions of them.

In the context of R™ the fractional integral operator of order o, 0 < o < n

is defined by
fw= [ LW _a,
re T =yl

It is very useful to know the action of I, on spaces of smooth functions when
studying regularity of classical solutions of differential equations uniformly
elliptical, as is the case of the Laplace equation. The classical result on the
behavior of the operator on Lipschitz spaces of functions is that it improves
smoothness, mapping Az on A5+a/n, if B4+ a/n<1.

Nicely, a similar behavior of the fractional integral operator is noticed
when studying its action in a more general context, that is, on the family of
Besov and Triebel-Lizorkin spaces on R™. Moreover, I, is an isomorphism
between BS? and BP9 and between 27 and F2™9 and its inverse is
the fractional derivative operator Dy, (see [5]). The Fourier transform is the
tool used to prove these results. An important application of the previous
facts is the identification, that we mentioned before, between Lﬁ(R") and
Fﬁ’z(R"), a>0,1<p< oo

In the context of spaces of homogeneous spaces Gatto, Segovia and Végi
in [6] extended the result on Lipschitz spaces by defining appropriate quasi-
metrics, dq, in terms of an approximation to the identity.

We are interested in considering a larger class of Besov and Triebel-
Lizorkin spaces of distributions, on spaces of homogeneous type. For this
class, defined in [9], local regularity is determined by more general 'moduli
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of continuity’ than the potentials ¢t*. Those are growth functions (t) as,
for instance, t% log(1 +t) or max(t*,t%). In the range of these spaces can be
characterized, for example, the Lipschitz space A of all complex functions
such that there exists a constant C satisfying

[f(z) = f(y)| < C¥(é(z,y)),

where 1 belongs to a class (defined later in this work) of non-negative and
quasi-increasing function such that lim;_g+ ¥(t) = 0 and limy— ¥(t) = oc.

In order to find the ‘natural’ isomorphisms mapping one space of local
regularity 11, onto another of regularity o the author and B. Viviani de-
fined, in [10], the Integral and Derivative operators of ’functional order’ ¢,
I, and Dy. This definitions are similar in spirit to those of fractional integral
and derivative operators given in [6].

The purpose of this work is to make a survey of the definitions and
results obtained by the author and B. Viviani in studying the action of
Integral and Derivative operators of functional order ¢ on AY, B;"q and
F,? "4, We avoid showing those proofs whose technical difficulties make them
too long to include here, referring the reader to the corresponding papers
for them.

2 Previous definitions and known results

2.1 Growth functions

Let first define the class of functions, 'moduli of continuity’, measuring
local regularity of the distribution spaces and also the order of our operators.
(For more details on these class see, [16], [17]). In this section by ¢(t) we
mean a non-negative real function defined on t > 0.

We say that ¢(t) is quasi-increasing (or quasi-decreasing) if there is a
positive constant C' such that if t; < tp then ¢(t1) < Co(ta) (or ¢(t2) <
Co(tr)).

The function ¢ is of lower type 8 € R if there is a constant C' > 0 such
that

o(uv) < CuPo(v) for u < 1 and all v > 0. (4)

Analogously, ¢(t) is of upper type o € R if there is a constant C' > 0 such
that
o(uv) < Cu®¢(v) for u > 1 and all v > 0. (5)

Clearly, the potential t* is of lower and upper type a. The functions
max(t®, t3) and min(t%, t%), with a < 3, are both of lower type a and upper
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type 8. Also, t3(1 + log* t), with 8 > 0, is of lower type 3 and of upper
type B + ¢, for every € > 0. Notice that (4) is equivalent to

o(uv) > éuﬁqﬁ(v), for u>1 and all v > 0,
and (5) is equivalent to
o(uv) > éu"q&(v), for u < 1,v > 0.

If ¢(t) is of lower type (8 and of upper type a then 3 < a. Notice that if
¢ is of upper type a and v > « then ¢ also is of upper type v, thus, there
is a right half line of upper types. Analogously if ¢ is of lower type 8 and
v < 3 then it also is of lower-type ~.

Two functions ¥ (t) and ¢(t) are equivalent, and we denote it ¥ ~ ¢, if
there are positive constants C; and Cs such that C; < ¢/¢ < Cz. Lower
and upper types are invariant by equivalence of functions. That is, if ¢ is of
lower (upper) type § and v ~ ¢ then 1 is of lower (upper) type 6.

If ¢(t) is of lower type 3 > 0 then ¢(¢)/t” is quasi-increasing for each
~v < 3. Nevertheless, Q':"v(t) =17 sups<; @ is a function equivalent to ¢ such
that q;.,(t)/t" is increasing. But, if ¢ also is of upper type a and v < 3 then
there exists a function ¢, equivalent to ¢ which is differentiable and such
that ¢,(t)/t" is increasing. More precisely, the function

t
6,0 =1 [ S ©)
is such a function.

Analogously, if ¢ is of upper type o and § > « then

(M

is a function equivalent to ¢ such that ¢s(t)/t’ is decreasing. If, in addition,
¢ is of lower type 3 and ¢ > « then, ég(t) =0 t°° g}f—{ds is a differentiable
function, equivalent to ¢ such that ¢;(t)/t® is decreasing,

Let denote C the class of all non-negative functions ¢ of positive lower
type and upper type lower than 1. Notice that the existence of positive
lower type implies the integrability in the origin of ¢(t)/t and, on the other
hand, upper type lower than 1 implies that ¢(t)/t is decreasing. Let also
denote A the class of functions ¢(t) defined on ¢t > 0 such that

(1) = p(1)eli " e (8)
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where 7(t) is a measurable function defined on ¢t > 0 and 3 < 7(t) < a for
some0< B<a<l

The following lemma, proved in [4], shows that there is an identification
between the classes A and C

Lemma 1. The class A is included in the class C and for every function in
C there is an equivalent function in A.
Moreover, if $(t) = zzb(l)eflt @ds, Sp = Sup;so N(t) and iy = infy5on(t), then
fors<1

(t)s™ < 6(st) < o(t)s™, (9)
and, for s > 1,

o(t)s' < ¢(st) < ¢(t)s*. (10)

Notice that then ¢ is of lower-type iy > 0 and upper-type s4 < 1.

2.2 Spaces of homogeneous type and approximations to the
identity

Given a set X a real valued function 6(z,y) defined on X x X is a
quasi-distance on X if there exists a positive constant A such that for all
z,y,z € X it verifies:

6(z,y) >0 and §(z,y) =0 ifandonlyif z=y
d(z,y) = d(y, z)
§(z,y) < Ald(z, 2) + d(2,9)].

In a set X endowed with a quasi-distance é(z,y), the balls Bs(z,7) = {y :
d(z,y) < r} form a basis of neighborhoods of z for the topology induced by
the uniform structure on X.

Let ¢ be a positive measure on a o- algebra of subsets of X which contains
the open set and the balls Bs(z,r). The triple X := (X, 4, u) is a space of
homogeneous type if there exists a finite constant A’ > 0 such that

p(Bs(x,2r)) < A'u(Bs(, 7))

for all z € X and r > 0. Macias and Segovia in [18], showed that it is always
possible to find a quasi-distance d(z,y) equivalent to §(z,y) and 0 < 0 < 1,
such that

ld(z,y) — d(«',y)| < Cr'~%d(=,2')’ (11)

holds whenever d(z,y) < 7 and d(z’,y) < r. If § satisfies (11) then we
say that X is of order 6. Furthermore, X is a normal space if Ajr <
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w(Bs(z,r)) < Agr for every z € X and r > 0 and some positive constants
A1 and AQ.

In this work X := (X, 8, 1) means a normal space of homogeneous type
of order 6 and A denotes the constant of the triangular inequality associated
to 4.

Let now define an approximation to the identity as given in [2], [3](where
it is given for non-compact supports) and [6]):
A family {Si}t>0 of operators is an approzimation to the identity if there
exist € < 0 and C,C; and C3 < oo such that for all t > 0 and all z, 2,y and
y' € X, the kernel s¢(z, y) of S, are functions from X x X into R satisfying:

si(z,y) =0 for d(z,y) > bit and |s¢(z,y)| < %, (12)
% < s(z,y) if d(z,y) < bat, (13)
¢(2.9) = 5o, )] + el ) — suly, 2] < C2EZL (14)
(se(a,0) = (e’ ) — (s 1)) — selal /)| < 2EZTIWN 35
[ stanin = [ szndue) =1, and (16)
¢(®,y) is continuously differentiable in t. (17)

Inequality (15) is not needed to our purposes but it follows from the con-
struction made in [2] and, also, that the kernels may be chosen to be positive
and symmetric, that is, for all t > 0, z and y € X

se(z,y) 2 0 (18)

St(zvy) = St(y,l'). (19)
The family {S;}¢>0 satisfies the condition lim;—o S; = I and lim¢_,oc S =0
in the strong operator topology on L.

In view of (12) to (19), the functions ¢;(z,y) = —t%st(z, y) are symmet-
ric and also satisfy (12), (14), (15) and

/qt(x,y)d,u(y) = /qt(y, z)du(y) =0 for all z € X and ¢ > 0(20)

Let P
Quf = —t5Si (21)
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be the operator defined by Q:f(z) = [ q:(z,y)f(y)du(y), for f € Lloc and

t > 0. The family {Q;}:>0 satisfies the condition [;° QtT = I in the strong
operator topology on L? in the sense that

R dt
lim
€—0,R—0o0 H/e @
The following Calderén type reproduction formula on spaces of homogeneous
type plays a crucial roll in obtaining Littlewood-Paley characterizations of
Besov and Triebel-Lizorkin spaces and proving continuity of the operators

on them. A discrete version of it was proved in [8], and a continuous one,
associated to a para-accretive function, in [3].

Theorem 2. Suppose that {S;}t>0 is an approzimation to the dentity and
{Qt}t>0 are as in (21). Then there exists a family of operators {Q:i}i0 (or
{Qt}t>0) such that for all f € MBY with0 < B, v <,

f=/0 QtQtht OTf=/O QtQthtq (22)

where the integral converges in the norm of LP, 1 <p< o0, and MBA)
with 3 < B and v' < v. Moreover, Q(z,y), the kernel of Q; satisfies the
following estimates: for €, 0 < € < ¢, there ezists a constant C such that

’

t€
(t+ 8(z, y))1+e
. <, §(z, ") \¢ t¢
Qe - Gl <0 (Sl
for J(I,z')gﬁé(z.y) (23)

/Q:(fyy)d#(y) = /Qz(z,y)du(z) =0 for allt >0,

and Qi(z,y), the kernel of Q; satisfies the above conditions ezcept inter-
changing x and y in (23).

By an argument of duality it is obtained a Calderén-type reproducing
formula on (M®BMY:

Theorem 3. Suppose that {Qt}i>0 is a family of operators as in Theorem
2. Then there exists a family of operators {Q;}1s0 (or {Qt}i>0) whose ker-
nels satisfy the same properties as in Theorem 2 such that (22) holds in
(MBI with B > B and ' > .
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2.3 Lipschitz functions, molecules, Besov and Triebel-Lizorkin
spaces

Let now consider a positive and quasi-increasing function n(t) defined
on t > 0 such that lim;on(t) = 0. The Lipschitz space A" is the class of
all functions f : X — C such that

= suplf @)= (;)m

S @y)

The quantity | f|,, defines a semi-norm on A”, since |f | = 0 for all constants
functions f. Given a ball B in X, A7(B) denotes the set of functions f € A"
with support in B. Since a function belonging to this space is bounded, the
number
£y = Nl fllse + 1f1s

defines a norm that gives a Banach structure to A”(B). We say that a func-
tion f belongs to A iff f € A"(B) for some ball B. The space A{ is the
inductive limit of the Banach spaces A7(B). Finally, (A)’ will stand for the
dual space of AJ.

Another suitable class of test functions of mean value 0 was defined in
(8-

Let 0 < B < 1,9 >0and z9 € X be fix. A function f is a smooth
molecule of type (8,7) of width d centered in xo, if there exists a constant
C > 0 such that

a4

|f ()] SCW (24)
d d

@) = $(e0) £ oo )" [(d+ 5@z | @+ oz
[ f@dutz) =0 (26)

hold for every z € X.

If the norm || f||(g,,) is defined by the lowest of the constants appearing
in (24) and (25), the set M(#720.9) of all smooth molecules of type (3,7) of
width d centered in z is a Banach space. By fixing zo € X and d = 1, that
space will be named M) and its dual space, (M@ Along this work
< h, f > denotes the natural application of h € (MBMY to f e MBI,

Local regularity of Besov and Triebel-Lizzorkin spaces we consider here
is associated to a function ¥ having a representation as a quotient of quasi-
increasing functions. More precisely, in the sequel, we consider 1 = /19,

(25)
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where 11 (t) and ¥(t) are quasi-increasing functions of upper types s; < €
and sy < €, respectively.
For f € (M¥PM) with 0 < 3,7 < ¢, we define

>~ 1 dt\a¢ .
e = ([ (Grleentar®)" it 1spsmnsaso @)

with the obvious change for the case ¢ = co. By interchanging the order of
the norms in L and [? it is also defined the norm

(/Om(ﬁmm%)%

Notice that in any case, || f|| = 0 if, and only if, Q:f is the zero function for
all t > 0. But this is equivalent to having S;f constant. Finally this means
that the distribution f is a constant. Thus we work with modulo constants
when considering (27) and 28; that is, f € (M))’/C in those equalities.

The Besov space of order v, B;f”q, for 1 < p,q < o0, is the set of all
fe (M(ﬁ"’))/, with 8 > s; and v > s, such that

£l g < 00 and 1(£,0)] < CI 1L ggallhl 3.

for all h € M®B), .
Analogously, the Triebel-Lizorkin space of order 9, F,?b 4 with 1 < p,q < oo,
is the set of all f € (M(ﬁ”))', with 3 > s; and v > s9, such that

Il pya < 00, and [(f, )] < [l gw.allhll(s.)s

for all h € MB),

When 1(t) = t* we recover the spaces Bg'? and Fy? with —e < a < ¢, as
defined in [3].

Applying Theorem 3 it follows that replacing the family {Q:}+>0 by a family
{Q:}e>0 satisfying (12), (14) and (20), the resulting norms are equivalent to
those defined in (27) and (28). Moreover, these norms are equivalent to those
given in [10] or [11] in terms of the differences of a discrete approximation
to the identity {Sk}kez-

By using the properties of the function v, and in the way it is proved
in [8], follows that the classes Bg”q, 1< p,q < oo and F#’q, 1< pg<oo
are Banach spaces and their dual spaces are B;,/ ¥4 and Fpl,/ v respectively,
with 1/p+1/p'=1and 1/qg+1/¢ = 1.

Moreover, the molecular space M) is embedded in BY*? and F"? when
s1 < B and s9 < 7 and M) is dense in B;’,b'q and F;b’q for all €, such that
max(sy, s2) < € <.

1/l ppa = Jif 1<pg<oo.  (28)

Lr
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2.4 Singular integral operators and T'1-theorem

A complex-valued function K(z,y) defined on
Q= {(z,y) € X x X : x # y} is called a standard kernel if there exist
0 <e<0, and C < oo such that for all z,y € X with z # y,

|K(z,y)| < Co(z,y)~", for every x#y: (29)
and
|K (z,y) — K(«,y)| + |K(y,2) — K(y, )| < Cé(x,z')*/6(x,y)' ", (30)

for 6(z,y) > 246(z,2').
A continuous linear operator T : Ag — (Aé3 )’ is a singular integral oper-
ator if there is a standard kernel K such that

<Tfg>= / / (2,9) f (1)9(2)dp(y)du(z)

for all f,g € Ag with supp fN supp g = 0. We then write T € CZK(e).

A singular integral operator T is a Calderén-Zygmund operator if it can
be extended to a bounded operator on L2?. For such operators we write
T e CZ0.

3 Integral and Derivative Operators of order ¢

To set the idea of the definitions given later in this section let first con-
sider the kernels |z —y|*™", —0co < a < n associated to the fractional integral
and derivative operators I, and D, in the context of R". For z # y,

oC
lz —y|*™ = (n—a)/ e gt
\

z—y|

o0
= (n—oz)/0 ta_lt_"XB(o,t)ﬂx—yl)dt
= u.m(n-—a)/ sz — y)dt, (31)
0

where w, is the measure of the unitary ball of R" and the family s; =
wﬁlt_"XB(o,t), t > 0 determines an approximation to the identity.

In the setting of spaces of homogeneous type, Gatto, Segovia and Vagi,
in 6], defined kernels 6, (z,y)* ! on this idea, by means of an approximation
to the identity as defined in Section 2.2.
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If we consider a function ¢(t) instead of the potential t*, (a > 0), we aim
to define the kernel associated to the integral operator of order ¢ resembling
&(6(z,y))/6(z,y), as well as the kernel of the derivative operator should
resemble (¢(6(z,y))d(x,y))~!. Thus, in the spirit of the definitions given in
(6], we defined in [10] the kernels associated to our operators.

Let remark that in [10] and [11] the definitions of the operators were
given for ¢ € C, that is a function of positive lower type and upper type
less than 1, and all the following results in fact are obtained for that class
without any change. We restrict here to consider the class A, which by
Lemma 1 is identified with C, since we are looking for the invertibility of the
integral and derivative operators.

In the sequel, we consider ¢ € A as in (8). By the remark given at the
end of section 2.1, ¢ satisfies (9) and (10) with o := sg < 1 as upper type
and §:= iy > 0 as lower type, and 7(t) = &—3) is such that 8 <n < a.

Let also consider a positive and symmetric approximation to the identity
of order € < 0, {S;}+>0, associated to the family of kernels s;(z,y), t > 0, as
defined in section 2.2.

Set

Ky(z,y) = /000 ?ﬁ)—tn—(t—)st(:c,y)dt for z#y. (32)

The application K has the representation in terms of a quasi-metric we are
seeking for. Indeed, since o < 1 then ¢(t)/t is continuous, decreasing and
invertible on R™ and, since the integral in (32) is positive then it is possible
to define a non-negative application d4(x,y) as the unique solution of the
equation

and dp(z,y) = 0 for z=y.

Lemma 4. ¢(d4(z,y))/ds(x,y) is equivalent to ¢(d(x,y))/é(x,y) and, thus,
dg(x,y) defines a quasi-metric equivalent to the natural quasi-metric § of X.

Proof. From (12), the substitution t = ud(z,y)/b; and the left inequality in

(9)
= ¢()n(t) ()
/0 —-—?—st(z,y)dt < cloz/(my)/b1 t—th
Cl 10(
< RSe[|
?(6(z,y))
e o
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since a < 1 and ¢(s/b1) < max(1,1/b$)¢(s) for all s > 0.
On the other hand, by (13) and since the right inequality in (9) implies that
¢ is increasing,

/0 T si(zy)dt > cQﬂ/s(:.;;)/bz o
> e [ ha Gy
o(8(z,y))
. C2w, (35)

since ¢(s/b2) > min(1,1/b3)¢(s) for all s > 0.
From (34) and (33),

606(x.y) _ ¢o(2,9) _ ., 6(3(z,y))
8(z,y) — Solzy) — N e(zy)

Ca

The equivalence between d4 and § now follows from the invertibility of ¢(t)/t
and the types of ¢. ]

Let now define the kernel associated to the derivative operator, (in fact,
in this case only is required 5 > 0 and « finite):

Ky4(z,y) = /0 g((:))tst(x,y)dt for x #y.

Reasoning as in the previous case, there is a quasi-distance d;,4(x, y), equiv-
alent to d, defined as the unique solution of

-1
(6(61/6(z,9))81/6(z,y)) " = K1/¢(z,y) for z #y and
d1/6(z,y) =0 for z=y.
Moreover, Kj/4(x,y) is equivalent to ((8(x,y))o(x,y)) L.
Notice that the kernels Ky(z,y) and K /4(z,y) are symmetric since s¢(z,y)
is.

To define the integral and derivative operators and study their action on
Lipschitz, Besov and Triebel-Lizorkin spaces, one needs to know regularity
conditions of their kernels. These properties, and also a cancellation one for
K, are obtained from conditions (12) to (14), of s;, and the types of ¢.
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Lemma 5. Let ¢ be of lower-type B and upper type c.
If a < 1 then

L) oot 0)) i o) 2 248(2,),

— ! <227
[Kol.u) = K@ )] < Ot

and, if @ < € and 3 > 0 then
[ [ae) = Kole' pldu(s) = 0. = and ' € X.
X

If 3> 0 and « is finite then
§(z,2')¢ 1
8(z,y)tte ¢(d(z,y))

The Integral operator of functional order ¢ is defined as follows:
For f € ASN L}, ¢ a quasi-increasing function of upper-type s > 0,

|K1/p(z,y) — K1/¢(z’,y)| <C if 6(z,y) > 246(z,2').

Lof(z) = /X Ko(2,9)f (0)du(y). (36)

There is also an extension to A¢:
If a +s < eand f e Af then

Lf(x) = /x (Kol ) — Kolzo.1) f(0)dulv). (37)

for every € X and an arbitrary fix zg € X.
Iffe A§ N LY, then fd,f coincides with I4f as an element of A& since
I,1(@) = Iof(2) - Iof (z0)-

The Derivative operator of functional order ¢ is defined in the following
way:
For f € AN L%, ¢ a function of positive lower-type A > o and finite
upper-type,

Dyf(z) = /X Kol 0)(f () — F(@))du(y). (38)

Its extension to A, & of positive lower-type A > « and finite upper-type, is
given by

Dyf(x) = /X(Kl/¢(:vs Y)(f () — f(@)) = Kiyp(@o, y)(f () — f(20)))dp(y)
(39)
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for each z € X and an arbitrary, but fix, zg € X.
If f € ASN L™, then Dyf coincides with Dyf as an element of A$/?, since
Dyf(x) = Dyf(z) - Dyf(ao).

We can now state the continuity of the integral and derivative operator
on Lipschitz spaces

Theorem 6. Let ¢ € A, and denote o = sy and 3 = ig. Let also € be a
quasi-increasing function of upper type s, a + s < €.

If f € ASN L} then there is a constant C > 0, independent of f, such
that ‘

|I¢f|,‘\£¢ < C|f|,‘\£-

If f € AS there is a constant C > 0, independent of f, such that
IToflco < C|flje-

Theorem 7. Let ¢ be like in the previous theorem and £ a quasi-increasing
function of lower type A > o and upper type s < € + 3.
If f € AN L™ then

Do flless < Cliflle-

If f € AS,
|b¢f|§/¢ < C|fle.

Since molecules are bounded and integrable Lipschitz functions, the in-
tegral and derivatives operators are well defined on them. Moreover, Iy is a
linear continuous operator from M®) to (M®'7)Y | for every 8,7, and
v >0and < Ipf,g >=< f,Isg > .

Analogously, if s, < 3 then Dy is a linear continuous operator from M (6
to (MW7)~ 4" and 8’ > 0. Moreover, if also sy < #' then < Dy f, g >=<
D $9» f>.

We are then able to apply Theorems 2 and 3 to obtain decompositions

of I and Dy on molecular spaces

<Ljg> = T QU@ e > 2L,
S
<Dyfig> = / / < QR0 Glg > T L,
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with Triebel-Lizorkin norms of I f and Dyf given by

a g\ e
Moflggea = ” vaen) §)
’ th)l/q

1 0 A ds
” A W/o |Qtl¢Qs(st)|;> Y

P

|\D¢f|\py/¢>,q < H(AOC w(t)/ 10: Do Qs st)‘_)qﬂ)l/q
I3

and analogous inequalities follow by interchanging the order of the norms p
and ¢ for the Besov norms of Iy and Dy .

In this direction it was proved in ([10]) that

Theorem 8. Let ¢ € A and denote 3 :=1iy > 0 and o := 54 < €.
If s+ a <€ and sy + a — B < €, then there is a constant C > 0 such that

A

Mofliggoa < Clfllga (40)
and |Iofllggoa < Clfl gya (41)

If s1 < € and s2 + a < € then there is a constant C > 0 such that

A

Do fllgyrea < Cllfllgpas (42)
and 1|D¢fHB;)/¢,q < C||f||3;qu- (43)

where the range 1 < p,q < oo is considered for the scale of F'- spaces and
1 < p,q < o for the B-spaces and v = 1 /)2, ¥; of upper-type s;, i = 1,2.

The key tools in the proof of the above inequalities are the following esti-
mates on the family of operators Q:/4Qs and Q;DyQ,, which are continuous
versions of those obtained in [10].

|QeI,Qsh(z)| < C¢(t/\s)(§/\;)(‘_S°>M|h|(z), (44)
QPQuA@)| < O (E A D MIN(e), (45)
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where M denotes the Hardy-Littlewood maximal operator and

IQUQshlly < ColEAS)(E A5, (46)
1 t s
1QDoQuhly < O (C A bl (47)

for 1 <p< oo.

Let prove (40) and (41), the other two inequalities following with similar
arguments.

By density arguments it is enough to prove those inequalities for f €
M9 where max(si, s2) < €.

We will also use the following inequalities. Since vy is quasi-increasing
and v is of upper-type s; then, for v > 1

1) _ ppm¥rw) 07
Y(u) i) T U1 (uv) Y(uv)’

and, since 9 is quasi-increasing and v, is of upper-type sz then, for v < 1

(48)

1 752
o) < oy’

Then, by the substitution ¢t = u and s = uv,

([ (m [ 100 @un ) %")Uq

1/q

+(/0°°( e / 1QuToQu (Quo ) 2 ) i ) b

151+ S2 llp-

(49)

1Tl o

IN

Applying (44) and (48) we get

00 00 gy —(e—sp—s1) du
Si(z) < C(/O (/1 w—()*‘JV”qufK) ) u)

On the other hand, by (44), (49) and the right side of (9)

o0 (e—sp+ip—s2 1/a
Sy(z) < c(/0 (/0 vw—(u——Mlqufl(z)—> —)
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By Minkowski’s inequality and hypothesis sy + 51 < € and sg — ig + 52 <€,

1/q
Si(x) + Sa(z) < C(/o (M}QE{)K )> u)

for every z € X. Since 1 < p,q < 00, we are able to apply the Fefferman-
Stein vector valued maximal inequality to get that

00 /1A Ly 1/q
1S+ 520, < Cll (/0 (%) %> lp < Clifllgy.ar

since the family of operators {Qt}t>0 determines equivalent norms on Besov
and Triebel-Lizorkin spaces.
On the other hand,

([ oo [ 10uteun@unly )’ %g
( <¢ /[IQuld,QuU(quf)Hp >qd7u>1/"

= S+ S,

IA

1Tl oo

y (46) and (48),

o0 1/q
(e=sp—s1 ”(quf)” dv du
S < C(/O (/1 ) ( )p ) )

By (46), (49) and the right side of (9),

1/q
= (e—sp+ig—s2) Mdv qd_u
stc</0 (/OU + Quflp )"

From Minkowski’s inequality and the hypothesis on s; and s3,
S1+ 5 < C“f”f;qu.o

As we mentioned at the beginning of this work, in the context of R"
the integral and derivative operators I, and D, are inverse one of the other
on Besov and Triebel-Lizorkin spaces. Even though this is not true in the
context of spaces of homogeneous type, Gatto, Segovia and Vgi showed in
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[6] that T, = D, o I, is a Calderén-Zygmund operator and also that it is
invertible in L? ~and the same result also applies to F3"? and By~ for small
values of a.

Focusing on the composition operator Ty = Dy o Iy, it was proved in
[11):

Theorem 9. If max(s1,s2) + sy < € then Ty = Dy o Iy is a Calderdn-
Zygmund operator bounded on F,',v’q and B;f”q, whose associated kernel is

K(zy) = / Kol 2) (o2, ) — Kolx, 4))du(z).

Since I and Dy are self-adjoint then the adjoint operator T} coincides
with Sy = I3 0 Dy. In this way and from the above theorem follows that S,
also is a CZO whose kernel is K (z,y) = K (y, z).

In a work to appear soon it is proved that for small values of sy the
operators Ty and Sy are invertible on Besov and Triebel-Lizorkin spaces,
providing the key for the invertibility of I between spaces of local regularity
1 and those of the same scale and local regularity ¢ and, reciprocally, the
invertibility of Dy between spaces of regularity ¥ and those of regularity
/¢, provided that s, is small enough. We use these facts to obtain an
identification between the space LP?* = {f € LP : Dyf € LP} and the
inhomogeneous Triebel-Lizorkin space Fy 2 with 1 < p < oo and sy small.
Moreover, for the values of s, such that Ty is invertible, we also prove that
its inverse T !is a Calderén Zygmund operator. The proof is the same
for Sg. It can therefore be said that Ty and Sy ’almost are’ the identity
operator.
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Universality in Orlicz spaces
Francisco L. Herndndez

Abstract

We describe some properties concerning the symmetric and lattice
structure of the Orlicz function spaces and its arrangement invariant
subspaces over probabilistic spaces. We compare with the behavior for
Orlicz sequence spaces and Orlicz function spaces over RT. We also
study the existence of universal Orlicz funcion spaces with previously
fixed Boyd indices.

1 Introduction

The aim of these notes is to survey several universal and structure prop-
erties of Orlicz spaces and rearrangement invariant (r.i.) Banach spaces.
Our goal is to study isomorphic embeddings of LP-spaces (1 < p < oc) into
separable Orlicz function spaces and r.i. function spaces.

The study of the isomorphic structure of separable rearrangement invari-
ant function spaces has been developed in the Memoirs of Johnson, Maurey,
Schechtman and Tzafriri [13] and Kalton [15] (see also Lindenstrauss and
Tzafriri [20]). It is well-known that isomorphic embeddings of LP-spaces into
separable r.i. function spaces on [0, 1] are abundant in the case 1 < p < 2
(by using probabilistic techniques). On the other side, in the opposite case
p > 2 there is a strong shortage of separable r.i. function spaces on [0, 1]
containing isomorphic copies of LP-spaces. Thus it holds that the existence
of an isomorphic embedding of L? (for p > 2) into a separable r.i. function
space E[0, 1] implies in fact the existence of a sublattice of the r.i. function
space E[0, 1] which is lattice-isomorphic to LP (see [7]).

The existence (or non-existence) of universal and complementably uni-
versal spaces inside predetermined classes of Banach spaces has been stud-
ied intensely in many contexts. It is well-know the universality of the space
C[0,1] for the class of all separable Banach spaces (i.e. every separable
Banach space is isomorphic to a subspace of C[0,1]), but it is not comple-
mentably universal. Let us recall also that there is no a reflexive Banach

2000 Mathematics Subject Classification. 46E30
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space universal for the class of all separable reflexive Banach spaces and that
there does not exist a separable super-reflexive Banach space universal for
the class of all P-spaces for 1 < p < oo (see [1], [24]).

In the setting of Orlicz spaces, the existence of universal sequence spaces
with prefixed estimates was proved by Lindenstrauss and Tzafriri in [L-T1]
finding Orlicz sequence spaces ¢f=.8, with arbitrary prefixed indices 1 <
a < 8 < oo, in which every Orlicz sequence space £¢ with indices between
a and J is isomorphic to a (complemented) subspace of the space ¢Fa.s,
Universal Orlicz function spaces on the unbounded interval (0,00) were
studied by C. Ruiz and the author in [11] showing that the spaces L® + L?
are lattice-universal for the class of all Orlicz function spaces LE (0, co) with
Boyd indices strictly between « and 8, i.e. every space LE(0, 00) is lattice-
isomorphic to a sublattice of the space L* + L¥.

Recently the existence of universal Orlicz function spaces L¥[0,1] on
the [0, 1]-interval has been proved in [10], jointly with B. Rodriguez-Salinas.
The construction requires some combinatorial facts as well as to consider
the uncountable discrete case. We describe here these results explaining the
connection of this topic with the study of discrete Orlicz spaces £F(I) with
uncountable symmetric basis, more precisely with isomorphic embeddings
of ¢P(T')-spaces into Orlicz spaces £f(I) for uncountable sets I' C I and
1<p<oo.

2 Orlicz function spaces on [0,1]

The notation and terminology follow the classical monographs [L-T 77,
79]. Let us begin recalling that an Orlicz space L¥[0,1] generated by a
Young function F is the space of all measurable functions on [0, 1] such that

1
Ip(sf) = /0 F(s|f]) d < oo

for some s > 0, endowed with the Luxemburg norm ||f|| = inf{s > 0 :
Ip(f/s) < 1}. The space LF[0,1] is separable if and only if the function F
satisfies the growth Aj-condition at oo (i.e. limsup,_, . F(22)/F(z) < o0).

The study of the structure of separable Orlicz function spaces L0, 1]
on the [0, 1]-interval was initiated by Lindestrauss and Tzafriri in [18] intro-
ducing the useful EY;, Cf; sets and using the Kadec-Pelczynski disjoin-
tification method. Let us recall that

E;fq:{p(”) : t>1}
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and Cg°, = tonv (EF,), which are compact sets in C[0,1]. The characteri-
zation of ¢P-subspaces inside an space LF[0, 1] is the following:

LF[0,1) 3[” < pelafF,BFIU(BF,2)u{2}

where a® and 3% denote the lower and upper Matuszewska-Orlicz indices
of the function F at oo which estimate the grade of p — convexity and
q—concavity. In this result the case p = 2 is clear, by using the Rademacher
functions and Khintchine inequality. And the case of p belonging to the
interval (8%°,2) is obtained via p — stable random variables.

The behavior of complemented ¢P-subspaces in Orlicz function spaces is
more involved. Let us denote by Ppr the set of p’s such that LF[0,1] has
a complemented ¢P-subspace. The geometry of the sets P;r can be varied.
Thus the set Ppr can be reduced to be just the singleton {2} or more general,
it can be any closed subset of an interval (e, 5] union {2}. It remain open
to know whether the set Ppr is always a closed set.

We pass to discuss isomorphic embeddings of the function spaces LP[0,1]
into separable Orlicz function spaces LF[0,1] and separable r.i. function
spaces E[0,1] i.e. when LF[0,1] D LP . There is no ambiguity in this
notation since LP-spaces on [0, 1] and on [0, c0) are lattice-isomorphic. The
structure of r.i. function spaces on [0,1] is quite more rigid than those in
the sequence case.

Theorem 1. ([18]) Let E[0,1] be an r.i. function space which does not
contain isomorphic copies of €5° uniformly and F[0,1] be a separable r.i.
function space (# La) with non trivial indices. If E[0,1] D F[0,1] then
either E[0,1] D F[0,1] or the Haar basis of F[0,1] is equivalent to a disjoint
sequence in E[0,1].

In particular for Orlicz spaces LF[0,1], due to the impossibility of em-
bedding isomorphically Orlicz function spaces into sequence spaces, we have
that LF[0,1] D> LE[0,1](# L?) = LF[0,1] > LF[0,1] . It follows
that reflexive Orlicz function spaces on [0,1] have a unique representation
as Orlicz function spaces: LF[0,1] = LE[0,1] = LF[0,1] = LE[0,1]. On
the other hand, an Orlicz function space L[0,1] cannot contain comple-
mented copies of other Orlicz function spaces: if LF[0,1] D L€[0,1](# L?)

~c

then LF[0,1] = LE[0, 1].
A general result by Kalton (obtained also in [14] and [13] under stronger
conditions) claims the following:



SEMINAR OF MATHEMATIC

PROCEEDINGS, UNIVERSITIES OF MALAGA AND SEVILLE (SPAIN)

<
|
=
>
53]
w
o)
A
A
<
o
7]
&~
&
Z
4
j=)
(=]
=
=9
o
=
a
=

SEPTEMBER 2003-JUNE 2004

Theorem 2. ([15]) A separable r.i. function space E[0,1] contains an
isomorphic copy of L' if and only if E[0,1] = L'[0,1], up to an equivalent
TeNnoOTming.

This is obtained in two steps: first, a separable r.i. function space E[0, 1]
containing an isomorphic copy of L! must also contain a lattice-isomorphic
copy of L! ; from this it is deduced next that E[0,1] = L![0,1] up to an
equivalent renorming, i.e.

E[0,1]> L' = E[0,1]> L' = E[0,1]=L'[0,1]
~ ~e
A useful criteria for the lattice-embedding of function spaces into r.i.

function spaces E(I) over an interval I was given in [13]. Let us denote by
>_F1 the set of Orlicz functions G of the form

o~ [ F(sz)
G = [ Flauts)

for z > 1, where p is a probability measure on (0, c0) such that

* 1
/0 f(s—)d#(s)ﬁl

Theorem 3. ([13]) Given a separable Orlicz function space L¥(0,1], if G €

S¥ then LF[0,1] > L€[0,1]. Furthermore, if L¥[0,1] is p-convex
’ ~¢

for some p > 2 and E[0,1)(# L?) is an r.i. function space which embeds

isomorphically into LF[0,1], then E[0,1] = LE[0,1], up to an equivalent

renorming, for some Orlicz function G € 2?1

3  Universal Orlicz function spaces on the [0, 00)-
interval

The structure of separable Orlicz function spaces L¥ [0, c0) on the inter-
val [0,00) has several peculiar and interesting properties which have been
studied in [21] and in [8]. For example, the characterization of ¢P-subspaces
in terms of the Matuszewska-Orlicz indices of the function F' at 0 and at oo
is now:

LF[0,00) 2 P = pelap,BrlUaF,[FUBF,2) U{2}U (BT, aF).
Universal Orlicz function spaces LF [0,00) with prefixed indices were

given in [11] showing that the classical spaces L* + L?, regarded as the
Orlicz function spaces L= Aa? [0, 00), are universal in the following sense:
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Theorem 4. Given 1 < a < 8 < o0, the space L* + L? is lattice universal
for the class of all Orlicz function spaces LE[0,00)  with indices strictly
between o and 3, i.e.

Le+ 18 2, LE[0, o)

In particular L® 4+ L? contain an isomorphic copy of L? for every o < p <
B. The proof uses some ”interpolation” arguments connecting the behavior
of a function near 0 and near oo in order to represent every Orlicz function G
in an integral form with respect to the function z® A z® (hence this method
does not work in the [0, 1]-case)

The embedding behavior into L* + L? is varied in the extreme cases
of Orlicz spaces LG[O, 00) with one of their indices equal to « or 3. For
example if @ < 2 < forif 2 < a < 3, the space L? is not isomorphic to any
subspace of L® + LA([6], [7])

Let us recall also here the first result of this nature: the existence of
universal Orlicz sequence spaces ¢F with prefixed indices, proved by Lin-
denstrauss and Tzafriri.

Theorem 5. ([17]) There exist Orlicz sequence spaces (¥ with prefized
indices 1 < o < < 00, such that every Orlicz sequence space (¢ with

indices between o and [ is isomorphic to a complemented subspace of the
space £F

There is uniqueness of these universal Orlicz sequence spaces ¢F with
prefixed indices. This follows from the complementation fact by using the
Pelczynski decomposition method. These universal spaces ¢F provide exam-
ples of Banach spaces with a symmetric basis which are isomorphic to their
dual spaces (different from ¢2).

4  Universal Orlicz function spaces L0, 1]

The study of isomorphic embeddings of LP-spaces into separable r.i.
function spaces on [0,1] leads to distinguish essentially two different cases:
the 2-concave case and the opposite.

In the 2-concave case there is a big amount of separable r.i.function
spaces containing isomorphically scales of LP-spaces for p < 2. This is a
well-known fact and requires some probabilistic tools (Poisson process, or
p-stable variables and ultrapowers). Thus ([13] Section 8, [20] p.212):

Let E[0,1] be an r.i.function space. If the function z='/P € E[0,1] for
some 1 < p <2, then E[0,1] D LP (isometrically)
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In particular for 1 < ¢ < p < 2, we have that the spaces L?[0,1] D

LP (isometrically), a classical result of Bretagnolle, Dacunha-Castelle and
Krivine [3]. Other classical function spaces with symmetric structure can
be isomorphically embedded into the spaces L?[0,1] for 1 < ¢ < 2. Thus for
Orlicz function spaces we have: L'[0,1] D L¥[0,1] holds if and only if the

Orlicz space LF[0,1] is 2-concave (Bretagnolle and Dacunha-Castelle [2],
Schiitt [23]). See also the recent survey by Dilworth [5].

The non 2-concave case on [0,1]. In contrast with the above case, there
is a strong shortage of separable r.i. function spaces on [0, 1] containing iso-
morphically scales of LP-spaces, for p > 2. Recall for example that for the
spaces L7]0,1] (with ¢ > 2), the Banach lattices which can be isomorphi-
cally embedded into L7(0,1] are essentially L7(u)-spaces for some suitable
measures 4 (cf. [20] p.202). In particular, the r.i. function spaces on [0, 1]
which are isomorphic to a subspace of L7[0,1] , for ¢ > 2, are just L9[0,1]
or L2[0,1] ([13] p.41).

Given any 2 < p < 00, no example was known of a separable r.i. function
space E[0,1](# LP[0, 1]) such that F[0,1] D LP. The impossibility of finding
such examples inside the class of Lorentz function spaces was showed by
Carothers ([4]). This shortage of r.i. function spaces with this property is
related to the following fact proved by Kalton and the author ({7] p.827):

Theorem 6. Let E[0,1] be a r.i.function space with some concavity and p-
convez for some p > 2. If a r.i. function space F[0,1](# L?) is isomorphic
to a subspace of E[0,1] then F[0,1] is lattice-isomorphic to a sublattice of
E[0,1] .

In particular, the existence of an isomorphic embedding of an LP-space
for p > 2 into a separable r.i. function space E[0, 1] implies that there exists
also a lattice — isomorphic embedding of LP into E[0,1] (i.e. for 2 <p <
0o, E0,1]2 17 = E[0,1]3 I?)

The existence of separable Orlicz function spaces L¥[0,1] containing
lattice-isomorphically scales of LPspaces for different values of p has been
proved in [H-R 98]. A more general result on universality given in [10] is the
following;:

Theorem 7. Given 1 < a < 8 < oo, there exists an Orlicz function space
LFa.5]0, 1], with indices of, , = o and B = B, such that every a-convez

B-concave Orlicz function space LG(0, 1] is lattice-isomorphic to a sublattice
of LF=5[0,1].
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Thus the spaces L=4(0, 1] verify that L¥«5[0,1] > L€[0,1], in particu-
lar for every a < p < 3 we have LFes[0,1] 3[ LP. ‘

Let us denote by Pr the set of scalars p such that LP embeds lattice
isomorphically into LF[0,1], i.e. P := {p >1: LF0,1] 2{ Lp}. We
consider a third parameter (different from the Matuszewska-Orlicz indices):
the "inclusion” index " associated to F'. Define

log F
~# := limsup —OE—(—IZ
-0 logx
It turns out that 7% = inf {p >1:LP0,1] c LF|0, 1]}
It is easy to check that a®® < 4% < B7°. And these inequalities can be
strict. Clearly if p is a scalar such that LF[0,1] > LP, then ¥ <p < B
~e

Hence Pr C [v§°, 8]

Many natural Orlicz functions F satisfy that the set Pp is just the empty
set (for example submultiplicative functions at co). On the other hand notice
that the universal Orlicz function spaces L¥«8(0, 1], given in Theorem 4.1,
have inclusion index g% 5= = af, s and that in this case the sets Pr reach
their biggest possible size filling all of the interval [, 8], i.e. Pr = [a, ].

The ”size” of the sets Pp can be arbitrarily small comparing with the
size of the interval [a, 3](see [9]):

Theorem 8. Let 1 < a < v < 3 < oo. There exists an Orlicz function
space LF(0,1] with indices o = o, 7% = v and ¥ = B such that LP is
lattice-isomorphic to a sublattice of L¥[0,1] for every p € [y, B%).

Thus for these spaces L¥[0,1] we have Pp = [v,4] C [a,8]. Let us
also mention that the sets Pr are not always closed: Given 1 < a < v <
B < 0o. There ezists a 3-concave Orlicz function space LF[0,1] with indices
o = o,V® =7 and B = § such that LF[0,1] 22 LP if and only if
p € ¥ OF)

It is a open question whether or not the sets Pg are always convex.

The method used in the proof of above Theorems involves some combi-
natorial facts and properties of Banach spaces with uncountable symmetric
basis. We pass to discribe this.

5 Uncountable symmetric basis and universality

The structure of Banach spaces with an uncountable symmetric basis
has a behavior quite different to the countable case. Recall that a family of
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vectors (e;)ies in a Banach space E is a symmetric basis if it is an uncondi-
tional basis and for every pair (i) and (i) of sequences of different elements
indices in I we have that (e;,) and (e;;) are equivalent basic sequences.
Using renorming arguments, Troyanski [25] proved that: if a Banach
space E with an uncountable symmetric basis (e;);c; contains an isomorphic
copy of ¢X(T) for some uncountable T C I, then E = ¢(I) . A similar
result holds with the space ¢y(T'): if a Banach space E with an uncountable
symmetric basis verifies E D co(T') for some uncountable T' C I then E =

co(I). This was also proved by Troyanski in [25].

A natural question is the possible extensions of Troyanski’s result on
£1(I')-embeddings to the case 1 < p < oo, i.e. whether there exist Banach
spaces (# ¢P(I)) with an uncountable symmetric basis containing an iso-
morphic copy of ¢P(T') for uncountable I'. The answer is yes, and the first
examples were certain non-reflexive Orlicz spaces with symmetric basis given
by Troyanski and the author in [12].

Fixed a discrete Orlicz space ¢7 (I), we consider the set >y of all Orlicz
functions

G(z) = /01 F;i;)du(s) (for 0 <z <1),

where 1 is a probability measure on (0,1]. The following criteria is useful
([22], [12)):

Theorem 9. Given an Orlicz space ¥ (I) with the function F satisfying
the Ag-condition at 0. Then ¢F(I) contains an isomorphic copy of ¢°(T)
for T C Tuncountable sets if and only if G € 3 ;.

We indicate now the method used in the proofs of the existence of univer-
sal spaces and Orlicz function spaces L& [0, 1] containing a lattice-isomorphic
copy of LP with prefixed indices o = a and BF = and a < p < .

Let us first point out that this result can be quite easily deduced after
solving a related problem for the uncountable discrete case, i.e. the existence
of discrete Orlicz spaces ¢F(I) containing an isomorphic copy of ¢?(T') for
uncountable I' C I. Indeed, by transfer arguments, we consider some r > (3
and define then an Orlicz function G near co by

G(z):=2"F(1/z)

where F is a certain Orlicz function defined near 0 such that ¢ (I) > ¢P(T)
for uncountable I' C I. Using Theorem 2.3 , the criteria for lattice embed-
ding LP spaces into Orlicz function spaces LE[0, 1] given in terms of the set
>.G1, can be applied to get the LP-embedding.
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We now focus on the construction of discrete Orlicz spaces ¢¥(I) such
that ¢F(I) > ¢P(T') for uncountable I' C I and prefixed indices. A cru-
cial point in doing this is the existence of series of positive terms with the
following “shift uniformly bounded” property:

Lemma 10. There exist sequences (an)5egand (€,)3%, of positive numbers
with Y0 g an = 00 and constants A >0 and B > 0 such that

M8

A Qn€n+tk < B

n=0

for every natural k =0,1,2,....

The existence of these sequences (a,) and (e,,) is proved using the follow-
ing combinatorial fact: given an arbitrary sequence (h;)$2, of positive inte-
gers with hg = 1, there exists a set of couples of positive integers {(m;, k;)}
with m; > k; such that for each n:

(i) there exist precisely h, couples (m;, k;) such that m; — k; = n.

(ii) there exist at most (n + 2)2 couples (m;, k;) such that k; — m; = n.

Let us indicate now other steps of the proof of ¢¥(I) D ¢P(T'). We can
assume a = 1 < p < B = p+ ¢ The other cases can be deduced from this
using g-concavification and r-convexification reductions and properties of
the > 1 sets. We consider the function

o0
f= an X(2-(n+1) 2-n)

n=0

where the sequence (g,) is given by the Lemma, and define the Orlicz func-
tion F at 0 by

T

F(z)= | (z—t)tP72f(t)dt.

S—

It turns out that the function f satisfies the following key property:

O‘nf(Zin) <B

M2

A<

Il
=)

n

for 0 < z < 1. From this, the following inequalities are obtained by integra-
tion

P ad T P
A—— < 22" F(—)<B —x
p(p—1) _Z%a (5) pp—1)
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for0<z<1.
Thus, if we consider the discrete measure p on (0, 1] defined by p(277) :=
an2P"F(27™), we deduce that the function G, defined by

L F(xt)

@)= ) Fo

(0<z<1)

satisfies that 2P = G € ZF,I' Hence, using Theorem 5.2, we deduce that
the Orlicz space ¢F(I) verifies ¢¥'(I) D ¢P(T') for uncountable I' C I.

Finally, using properties of the sequence (&) constructed in the Lemma,
the associated indices of the Orlicz function F' can be computed to obtain
ap=1and fp=p+e.

A more general result is the existence of universal Orlicz discrete spaces
¢F(I) with prefixed indices given also in [10]:

Theorem 11. Let 1 < a < 3 < co. There exists an Orlicz space £F>3(I),
with indices af, ; = a and Br, ; = B3, such that (Fa5(I) contains an iso-
morphic copy of any a-convex (-concave Orlicz space £G(T) with T C I
arbitrary sets.

This theorem provides in particular new examples of universal Orlicz
sequence spaces /=5 with prefixed indices o and g different from the given
by Lindenstrauss and Tzafriri in [17].
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Projection constants, isometric
imbeddings and spherical designs

Hermann Konig

Abstract

We derive upper estimates for projection constants of finite-dimen-
sional normed spaces and show that the bounds are attained for spaces
with unit balls generated by certain spherical designs. The extremal
spaces, however, are non-unique, in general. We also discuss applica-
tions of spherical design techniques to the problem of isometric imbed-
dings of enclidean spaces into [,-spaces if p € 2N.

1 Introduction and main results on projection con-
stants

Projections of minimal norm onto subspaces of a given Banach space are
useful in approximation theory and in functional analysis when one considers
continuous linear extensions of operators given on subspaces only. Given a
(closed) subspace X of a Banach space Z, the relative projection constant
of X in Z is

MX,Z) :=inf {||P|||P:Z — X C Z alinear projection onto X, P?=P},
the (absolute) projection constant of X is
A(X) :=sup{\(X, Z)|Z is a Banach space containing X as a subspace} .

The scalar field will be always K € {R,C}. Any separable Banach space
can be imbedded isometrically into l; for any such imbedding one has
AMX) = MX,loo) : loo is the “worst” superspace with maximal relative
projection constant. For finite-dimensional spaces X,dim X =: n, one has
by Kadets-Snobar [8], A(X) < y/n. In fact, a stronger estimate is known.

Let < -,- > denote the standard scalar product on K™ and ||.||2 = /< .- >
be the euclidean norm. Vectors zi,...,zny € K" are called equiangular
provided that |[zill2 = 1, | < @j,z; > | =a < 1lforalll <i#j< N

holds. Let N(n) := n(n+1)/2 if K =R and N(n) := n? if K = C. It
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is easy to see that no more than N(n) equiangular vectors can exist in K"
since the orthogonal projections onto the lines Kz; turn out to be linearly
independent as operators over R, cf. Lemmens-Seidel [14]. Let us define
functions

gr: N>R, gr(n) = 2+(n-1)vn+2)/(n+1)
gc:N—-R, ge(n) = (1+(n—-1)vn+1)/n,

and denote g = gk for K =R or C. It is easy to see that g(n) < v/n for all
n € N and gg(n) = y/n — ﬁ +0(L) as well as gc(n) = n — ﬁ +0(2)
for large n € N. The following strengthening of the Kadets-Snobar bound
is valid, cf. [10], [11]:

Theorem 1. (a) The projection constant of any n-dimensional normed
space X, satisfies

A(Xn) < g(n) < Vn. 1)
(b) Given K and n € N, there exist n-dimensional spaces X, for which the
bound (1) is attained if and only if there exist N(n) equiangular vectors
T1,...,TN@) € K" In this case, extremal spaces X, can be realized as

subspaces of XM op lf](") by defining the norm of X, = (K™, ||||) as

lzllo = sup |<za;>]
1<j<N(n)
or
N(n)
lzlly = z | <z,2;>|
j=1

Unless K = R and n = 2, both spaces are non-isometric and both have
mazimal projection constant. The orthogonal projection is the minimal pro-
Jection.

Let us remark that N(n) equiangular vectors are known to exist for
K=R:n=2,3,7,23.
K=C:n=2,3,4,8, cf. [14], [18].

In the real case, for n > 3, a necessary condition for the existence of
N(n) equiangular vectors is n = (2m + 1) — 2,m € N, cf. [14]. For m =
3,n = 47, they do not exist, however (E. Bannai, personal communication).
It is unlikely that N(n) equiangular vectors exist for other n than 2,3,7,23
if K = R. On the other hand, it is conjectured that N(n) = n? equiangular
vectors always exist in C". This was checked numerically up to n < 45
within error tolerance of 1078.
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For K = R,n = 2, N(n) = 3 the extremal 2-dimensional subspace of I3,
or I3 is the one with sum of coordinates being zero, in both cases the unit
ball is a regular hexagon. For K = R,n = 3, N(n) = 6, the equiangular
vectors in R® are the six diagonals of the regular icosahedron.

The norm |||l thus has the regular dodecahedron as its unit ball, it is
dual to the icosahedron. The norm ||.||; yields a different unit ball which
may be described as D N ¢I where D is a regular dodecahedron and I
the icosahedron having the midpoints of the faces of D as its vertices and
6 = (1+/5)/2 is the “golden ratio”, D N @I has 12 regular pentagons and
20 regular triangles as its faces.

Even though the existence of N(n) = n? equiangular vectors in C* has
not been proved, there exist n> — n + 1 such vectors if n is an odd prime
power. As a consequence, the bound in (1) is almost attained:

Proposition 2. Let n = p™+1 be a prime power plus 1 and N = n? —n+1.
Then there exist complex n-dimensional subspaces X, of CV, which when
considered as subspaces of I, or IV, satisfy

A 2 gln) = 5= 2)

The N(n) vectors z; of Theorem 1 form a spherical 4-design on S™~! C
K"; this means that

N
[ o) = 5 ¥ pta) 3)
Jj=1

Sn-1

holds for N = N(n) and p being an even polynomial of degree 4. If one
adds the vectors (—z;) and replaces N by 2N, one has equality (3) for all
polynomials of degree 5.

Since L’:l) — 1, the spaces X, of Proposition 2 satisfy nlggo

MXn) _
T = 1.

An improvement of this estimate can be given for spaces with 1-symmetric
spaces: It was shown in [9] that there is ¢ < 1 such that for any n-dimensional
space X, with an 1-symmetric basis one has

’\(Xn) < C\/ﬁ~

For example, if X, = l5,1 <p <2 one knows that lim Mp) _ \/g
n—oo

(<1)if K=Rand ¥ (<1)if K=C.
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2 Trace-duality

As with many optimization questions, it is useful to consider a dual
formulation of the problem.

Lemma 3. Let n < N and X, C lé\; be an n-dimensional subspace. Than
there ezists a map u : lf,vo — lol‘é with u(X,) C X, such that

N
MXp) =tr(u: X, — Xn) and Y ||uejfloo = 1.
j=1
Here e; denote the standard unit vectors in .

Proof. By compactness in finite dimensions, there exists a projection Py :
¥ — X, C ¥ onto X, of minimal norm. Thus ||P| = A(Xn) =: A.
Consider the space L(IY, 1Y) of linear operators on I, equipped with the
operator norm. The sets

A={secull) | ISI<x
B={PerL(N,iNy | P=pPy+ sz()zi for some m € N,

i=1

L1, T € Xn, 2§, .., 20 € X2 C (1N)*)

are convex and disjoint since B consists of projections onto X, and ||P|| > A
for any projection P. Since A is open, by Hahn-Banach there exists a
functional ¢ € L(IY,IN)* of norm ||¢|| = 1 such that ¢(Pp) € R and for all
S € A and P € B we have

Re¢(S) < A < Re¢(P).

In particular, ¢(Py) = A. By trace-duality, ¢ is represented by u €
LN, IN) as ¢ = tr(u.). Since the operator norm of w € L(IY, 1Y) is just

lw|| = sup |lwej|l1, the dual norm is given by
1<GEN

N
ll = litr(u)ll = Y Juejlloo = 1.
j=1



For any z € X,, z* € X;+ we know for P = P + 2*(.)z

Z

S

A < Re¢(P) = Re[p(Py) + ¢(*(.)x)] = A + Retr(uo (z(.)z))

vz = A+ Rez*(u(z))

zZ3

<38
SEP
el Hence Rex*(u(z)) > 0 for all z* € Xtz € X, which yields z*(uz) = 0,
E % Sl ie.[?] w(Xn) C X, Further
L og e
§ MNXn) = A = ¢(Po) = tr(uPy) = tr(u: X — Xn),

E S
24 N
o35 and as seen before Y |luejlloo = 1. O
E % Proposition 4. Let n,N € N and n < N. Then
5 E Nix, i ensi v

sup{A\(Xn, lsg)| Xn is an n-dimensional subspace of o}
N
= n sup Z Wipk| < Tj, Tk > | (4)
k=1

where the second supremum is taken over all discrete probability measures
Pp= (uj)év:l € (Ry)V, |lullh = 1 and over all sets of vectors z; € S™~

such that
N

Id,, ='nz,uj <x;>x; on K™
j=1
Both supremes are, in fact, marima. Given extremal elements (zj, p1;)
for the right side of (4) - where we may assume that all p;j # 0 - an n-
dimensional space X, with mazimal projection constant may be defined by
its norm ||z|| = supi<j<n| < z,7; > | as a subspace of N or ||z|| =

N
3wl < x,z;5 > | as a subspace of I ().
j=1

Proof. “<”: Assume that X, has maximal projection constant among n-
dimensional subspaces of 1Y, i.e. A(Xn,!) = A\(X,) attains the left supre-

N
mum. Choose u € L(IY, 1Y) as in Lemma 3 with u(X,) € X, and ¥ ||luej|lco =
j=1

LA(Xn) = tr(u: Xn — Xgn). Let pj := |luej|lo. Hence p = (,uj)é-\’:l €
(R4)V is a discrete probability measure. Consider X, C [¥ = KV as an
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algebraic subspace of 1YY (1) = KV and let fi, ..., f, be an orthonormal basis
1

N 2
of X,, under the norm of I3 (1), ||€]2 = (Z ]§j|2pj> . Then
i=1

n
AXn) = tr(u: X, — Xn) =Y <ufi,fi > ()
i=1
N

n N n
SN ufi NV EGws < 3wl Y ufi)FG)
j=1 =1

Jj=1

.
-

N n N n
< D omllY o FiG)ufille =Y ny|fu (Z ﬁ(j)ﬂ)
Jj=1 =1 Jj=1 =1 oc
N N N
But for € € Xy, [|u(é)l|,, = ||u (Z m) < S lalluerlloo = S L€kl k-
Thus i k;l o k=1 k=1
AXn) DS i Zfi(j)fi(m‘ :
Jj=1k=1 i=1

n
taking £ = Y fi(j)fi € X, Let zj = %( (7)), € K™ Then
i=1

AXn) <n Bt | < x5, T8 > |

1

R

J

N
where > pj < -,z; > z; is a multiple of the Identity on K" since fi,..., fa
Jj=1
was a p-orthogonal basis. Since

N N n

N
tr ZH]‘ <xTji> ) Z,Uj <ZTj,T; >= ZZW}'(UPW

j=1 j=1 i=1 j=1

1 n
= 5 Ll =1

Il

the multiple is 1, i.e.

N
Id, :anj <. zj >z,
=1
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N
and Y pjllz;]|l2 = 1. Hence
Jj=1

N N
AMXrn) < nsup Z Wipk| < zj, Tk > | IdnznZuj<~,zj>zj
k=1 =1

(5)
It is shown in [10] by a rather lenghty argument using Lagrange multipliers
that the right hand supremum in (5) is, in fact, attained for vectors x;
which have constant ly-norm p-a.e. We will not give this argument here.
Assuming thus p; # 0 for all j = 1,..- N (otherwise X,, is a subspace of
some (M with M < N), we get in the extremal case ||z1]2 = -+ = ||lzn].
N
From Y pjllz;ll3 = 1 we infer that ||z;|2 = 1, i.e. z; € S*~1. This proves
J=1
the inequality “<”.
“>”: We only give a sketch of the argument, for details see [10]. Assume
that (x;, M)f’:l attains the right hand supremum in (5), call this

A=n Btk | < zj, Tk > .

1

>
Il

-

I

The Lagrange multiplier approach yields that the map

u = (sign(< xj, Tk >)l‘k)§\,/k=1 : lévo — lévo
is a multiple of the identity on X,, := Span([fi, ..., fn] where f;(k) := /nzki,
zk = (Tx)q € K*. Henceforall j=1,...,N;i=1...n

N

Zsign(< Tj, Tk >)kThi = Y Tji-
k=1

Multiplying with Z;; and summing over i yields together with z; € Ssn-t
that

N

Sol<zjme > lm =7

k=1

independent of j € {1,...,N}. Thus the multiple v is equal to v = A/n. If
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(7] P: 1Y — X, C 1Y is any projection onto X,

N
A = tr(u: Xy = Xp) = tr(P 15— 13) <[P [luex]|
k=1

Il

N
1Py w = 1Pl

k=1

Hence X,, is an n-dimensional subspace of I with projection constant > A.
As a subspace of IY, it inherits the norm

n
E Th;
i

sup
1<kSN |4

1, «— —
— a;fi = = sup |<xg,a> 6
Y oifil o | L ®
where o = (o4)j; € K™ is the natural coordinate vector. By some duality
argument using u* it can be seen that also Span|[fi, ..., fn] as a subspace of

N
IV (p), i.e. with norm Y | < zg,a > |u, has projection constant A. This

proves the reverse ine(;uzility and shows how the vectors xj are related to
the construction of extremal spaces X,. The norm given by (6) on X, shows
that the dual unit ball of X, (as a subspace of 1Y) is just the absolutely
convex hull of the vectors zy,...,zny € K™ O

3 Estimating the projection constant

We now turn to the proof of Theorem 1 using the duality result of Propo-
sition 4. For this we use a simple but useful Lemma due to Sidelnikov [4].

Lemma 5. Let p = (u]-);\’:l € (Ry)N be a discrete probability measure and
consider N points z1,...,zny € S*~1 on the sphere in K*. Let o denote the
normalized surface measure on S"~1. Then for every even integer 2k € 2N

N
S l<apa> P [ [ <y > Pao@doty).

gil=1

In the complex case, express the integrand in real variables and integrate
over S?"~1(R). Thus the discrete (2k)-th moment is always bigger than the
continuous moment with respect to the surface measure. For other powers
this is not true, in general.
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Proof. (for K = R). For = € R®, denote by 28% = 2 ® --- ® z € R* the
(2k)-fold tensor product. Then for z,y € R"

<z 8% 5 a=<azy>H=| <,y >p [P

Given (zj, uj) define the tensor

n—1

N

(= § ujr?% —/ %% do(z) € R
; S
Jj=1

The integral is a vector integral which can be defined coordinate-wise.
N

Clearly (3) 0 < < (¢ >pa2v= > pjm| < zj, x> |2k
=1

N
—2ij/ | < zj,z > |*do(z) +/ / | < z,y > |*do(z)do(y).
j=1 Sn-1 sn—1 Jgn-1

Since o is rotation invariant and x; € S™7!, the first integral does not
depend on j € {1,...,N}. We may just take z; = e to be a standard unit
vector, similarly the inner integral in the last term does not depend on y.

N
Thus with Y pj =1
j=1

N

0<<¢C>=) ujm|<rj,xl>|2’°~/ | <e x> [*do(x)
. Sn—l
gil=1

which proves Lemma 5. O
Cleartly [ |<e,z > |*do(z) =: cy depends only on n and k and can
n—1
be calculated easily using polar coordinates. In particular, one has

2

n(n+1) ™

1
Cnl = ;7 Cn?(R) = Ma Cn?((c) =

Equality in Lemma 5 is equivalent to ¢ = 0. Expressing ¢ in coordinates,
this means that for any monomial p(z) = z{* ---22" of total degree a; +
-+ an = 2k we have

N
3 play) = /... p@o(a). ®)
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Since these monomials form a basis of all polynomials p which are homoge-
neous of degree (2k) in n variables, these are also integrated exactly by the
cubature rule (8). Any even polynomial of degree < 2k is a sum of poly-
nomials homogeneous of degree (2!) where 0 < I < k. Since these may be
multiplied by < z,z >*~! on the sphere S™~!, (8) integrates all even poly-
nomials of degree < 2k : the vectors (x;) and the measure (u;) constitute a
spherical design of degree 2k in n variables.

Proof of Theorem 1. i) Let X, be an n-dimensional normed space. By ap-
proximation, we may assume that X, C lévc for some finite N € N. To
estimate A\(X,) from above, using Proposition 4, we have to bound any
expression of the form

N

n Z pisk| < zj, xR > |
k=1

by g(n) where z; € 8™ 1 and ; are such that
N
Idn:nz,uj<-,zj>zj. 9)
j=1

Leta=1/yn+2if K=Randa=1/yV/n+1if K=C. Fort e [-1,1],

(It = a)® = (1 = &®)/(t] + @))* = (2 — a®)?/(1 + a)?,

[t] < 70 +y2t? — matt, t € [-1,1] (10)
where

a3 1 + « _ 1
20+a)2 ? T2 T+ T 22l + a2

_a
’Yo—2

are > 0. Equality in (10) holds if and only if |¢| = a or 1. Therefore

N
nY wipk| < xjak > |
J.k=1
N N
< nyo +nye Z pitkl < zj,an > P — ny Z pibkl < xj, k> L
Ji.k=1 k=1
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N
y (7), 3 pjpk| < zj 2k > |> = 1/n. Using Lemma 5, we find that
k=1
N
n Z wipk| < zj, 2k > | < nyo +v2 — nyacn2(K) = g(n)
k=1

with cp2(K) as in (7). The last inequality is by calculation, g is the function
given in Theorem 1. Actually, the value of a chosen is such that it minimizes
the expression nyp + 2 — nyacn2(K); it depends on K since cp2(K) depends
on K € {R,C}. Thus A(X,) < g(n) as claimed.

ii) As for the case of equality, clearly needed is for all j,k =1...N that
7| < zjyzr > | € {a,1}, ie. for j # k that | < z;,zx > | = a: the lines
spanned by the vectors z; should be equiangular. There are at most N(n)
equiangular vectors in K" with N(n) = n(n+1)/2 if K = R and N(n) = n?
if K = C since the orthogonal projections onto the lines spanned by the x;’s
Pj :=<-,x; > zj, are linearly independent as operators:

We know that

< P]‘,Pk >i= tT‘(Pij) = ! < Zj, T > ‘2 =

and hence the Gram matrix

N
G=(< PP >)j,k=1 =
a? 1
has determinant # 0 since a < 1. Being hermitean, there are only at most

N(n) linearly independent P;’s. In the case of equality, therefore by using
the Cauchy-Schwartz inequality

g(n) = Z#]Hka+z,u] (1-a)
k=
Jk=1 . ,
> na+n/N Z (1-a)=na+n/N1-a)
2z na+n/N(n)(1-a)=g(n).

The last equality again is by direct calculation. Since this is a chain of
equalities, N = N(n) must be maximal and all u;’s equal to pu; = % An
extremal space X, can hence be realized by considering the norm

lz| = sup |<z,z;>|
1<jEN
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or, dually, by
N
lell =S 1 < a5 > .
j=1
The matrix P = n/N(< z;, ) >) k=1 = 1 gives the orthogonal projection
onto X, with ||P|| = {(1+ (N ) ) =g(n). 0O

Since there are only a few cases of known sets of equiangular vectors
in K" of maximal possible size N(n), it is useful to study examples which
almost give the maximal number and yield spaces with almost maximal
projection constant. We can do this in certain complex dimensions. For
this, we need the following number theoretic fact, cf. [6]

Lemma 6. Let n = p™ + 1 be a prime power plus 1 and N = n?> —n + 1.
Then there ezistdy, . ..,dn € {0,..., N—1} such that all differences (d;—dm)
modulo N (I # m) are all different and yield all n(n —1) = N —1 integers
between 1 and N — 1.

Using this, we now construct complex spaces to give the

Proof of Proposition 2. Take di,...,d, as in Lemma 6 and let with N =

n?—n+1 ) n
zy i=n"Y? (exp (@dlk)) € s*H(C).
N =1

for k =1,...,N. The vectors z; are equiangular since for j # k
2
n .
27 .
Z €xXp (Wdl(J - k))
=1
n .
27
= % e (- du)

n? < zj,zp > |2 :=j—k#0

lm=1
21
l#m
N-1
= n+ Zexp (—ke) =n-1,
k=1

hence | < zj,zr > | =vn—1/nforalll1 <j#k<N=n? -n+1
Defining f; = (zx)f_, € CV, we have for | # m

M1 i N
<firfm>=)_ ~exp (—]\T(d, - dm)k) =

k=1
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and thus

N
n
Idn=ﬁz<-,zk>:ck on C".

k=1
Let X, = Span(fi,..., fn) C IX. Considered as a subspace of 12, (\/_fl)[ 1
is an orthonormal basxs of X, and P := {(< zj, % >)]k 1 gives the or-
thogonal projection onto X,,. Clearly
n a N
MX,) <|IP| = — sup Z| <zjTp>|= (1+(N 1)
1 n

) =: hin)

To show that A(X,) = h(n), we consider

vn—1
U= (< Tj, Tk >)§\,Jk=l_ (1_ nn >Ile<1>Vo_’léVO

Then for all j,k=1,...,N, lujx| = vVn—1/n and

ulxnz(ﬁﬁl*k n_l)ldx,I
n n
Hence

tr(u: Xp, > Xp)=N-n+vn-1
and

N N NS

n—1
> lluejlloo = sup fuj| = N>——.
= =1 1Sk<N n

This implies that for any projection @ : lé\’o — X, C lé"o onto X,
N-n+vn-1 = tr(u: X, — X;) = tr(uQ)
N
vn—1
< QI luejlloo = QIN——,

Jj=1

A

therefore

a4 \/nT
- N vn
the last equality again verified by direct calculation. It is easily checked that
[?] h(n) < g(n) < h(n) + ﬁ so that (2) holds. Since u is symmetric, a
similar construction works in 1 instead of Iy by duality. O

MX,) > = h(n),
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4 Isometric imbeddings of euclidean spaces into
l,-spaces

We now turn to the problem of imbedding euclidean space isometrically
into 111)\1 -spaces where similar spherical designs techniques are useful: again
equiangular vectors and the Sidelnikov lemma are needed.

It has been known for a long time - see e.g. Lyubich [13] that even
the 2-dimensional Hilbert space 3 does not imbed isometrically into l{,v for
some finite N € N unless p is an even integer. In fact the same is true even
for imbedding {3 into the infinite-dimensional lp, see Delbaen, Jarchow and
Pelczynski [2]. However, for even p = 2k € 2N, isometric imbeddings of [}
into I exist provided N = N(n, k) is sufficiently large. The easiest example
of imbedding 12 into /3 is a consequence of the equality

4 4
r V3 z V3 9
ot (“ + —y> ' <_5 - 7y> = 3@+ (@y) € R

which means that with f; = (1,-1/2,-1/2), fo = (0,1/3/2,—/3/2)
lzfi +yfalla = V9/8[(z, y)ll2
3
holds and X2 = Span[fi, f2] = {z ERY Y 2z = 0} C 18 is hilbertian. In
i=1
general, the following holds:

Proposition 7. Letn, k € N»o. Then there exists N € N such that 1§ — 1},
imbeds isometrically. In fact, N can be chosen such that

Lin,k) < N < U(n, k)
where
Lin k) = (1), Un,k)=(""3"") K=R
Lk = (R (TR, Uk = (Y K= C
Clearly, L(n, k) ~n¥, U(n, k) ~ n?* as n — oo.

Proof. We give the proof for the upper bound yielding the possibility of
isometric imbedding, for K = R, taken from [16]. If o denotes again the
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normalized Haar measure on S™~!, the rotation invariance of ¢ implies for
zeR"

| <2,y > [*do(y) = cuillz]3"
Sn-1

Approximating the integral by Riemann sums, we see that c,z|.[|?* is in
the closed convex hull of the polynomials P = {< Ly >k ly e S"’l} in
the positive cone of the (2k)-homogeneous polynomials of degree 2k in n
variables ch,?',‘l‘ Being a finite-dimensional space, the convex hull is closed
and hence Carathéodory’s theorem yields that N may be chosen smaller

than N < U(n, k) = dim Pjem = ("F7F71). O

The connection between isometric imbeddings and spherical designs is
given by the following result found e.g. in [7] or partly in [4], [15] or [17].

Proposition 8. Let n,k, N € N>o. Then the following are equivalent:
(1) There exists an isometric imbedding 5 — 13)..

N
(2) There exist points x,,...,xxy € S*™1 and (uj)éyzl CRy, Y pj=1
=1

such that
N
7wl < zjm > |* = / | <@,y >[*do(z)do(y) =: cak
j,l=l Sn—1 gn—1

(3) There exist points x1,...,zn € S*! and (#j)gyzl C Ry, Z;V=1 pi=1
such that for all even polynomials of degree 2k in n variables p € P/}

N
Dy plz;) = / p(z)do(z) (11)
J=1 Sn—1

Thus (z;, p;) yield a cubature formula with N nodes for even polynomials
of degree 2k which constitutes a spherical design of degree 2k.

Proof. (1)=(2). Any isometric imbedding i : {§ — I5 has the form

N 1/2k

zelfm (<zz >N, el llzle= | D | <az > *
j=1
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N N
Let z; := zj/||zjll2, 5 := ”z],”gk/lzzl ||Zl||%k and d = IZ:I ||Zl||%k~ By rotation
invariance of o, for z € S"~!

N
Youjl <z > *=d )3k =d
=1

n—1

N
— ! / g dow) = 3 1y / | <25 > Pdo(y) = en.
gn-1 j=1 S

Take x = z,, and sum over m=1,...,N.

(2)=>(3). This was proved in the remark following the proof of Lemma
5 since (2) means that ¢ = 0.

(3)=(1). Apply (3) to p =< -,z >2* for fixed z € K™. O

The lower bound in Proposition 7 is now an immediate consequence of
(3): If N could be chosen < ("*f7!) = dim P,:f"nm, for any set of vectors
(Ij)évzl C S™7! there would be p € P,&%’" with p(x;) = 0 for all j. Then
p? € PQ}‘,?';‘ and for any (u;)

N
> wip(z;)? =0# / py)? do(y)
Sn—l

J=1

in contradiction with (3).

Clearly, one is interested in cubature formulas with a minimal number N
of nodes or equivalently in imbeddings into lé\,’c-spaces of smallest dimension
N. Thus let

N(n, k) := min {N|3 an isometric imbedding &§ — 3.},

and we know that L(n,k) < N(n,k) < U(n,k). Looking at (3) in Proposi-
tion 8, dimension reasons might indicate that the upper bound may be the
right order. However, Dvoretzky’s theorem as in [3] might give hope that
the lower bound could be sharp. Designs (z;, ;1;) attaining this lower bound
N(n,k) = L(n,k) are called tight. There exists a charaterization of tight
designs by Bannai [1] and Hoggar [5] which we cite as.

Proposition 9. Let n,k € N>o and assume that N(n,k) = L(n,k) =: N.
Then there exist points (mj)f;l C S™71 such that (11) holds with yuj = 1/N
and for any 1 < j #1 < N the scalar products | < x;,x; > | are zeros of a
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fized polynomial Cyy, of degree k in one variable. For k = 2 this is equivalent
to the existence of n(n+1)/2 (R) or n? (C) equiangular vectors in K™ which
was discussed before.

The polynomials Cy are given in terms of Jacobi polynomials for K = R
as Cpi = P,i("_l)/z("_l)ﬂ). They are even/odd depending on whether k is
even/odd. For instance, Cna(t) = (n+2)t2—1 so that one needs | < zj,z; > |
to be equal to | < zj,2; > | = 1/v/n+2 : the vectors are equiangular
and N = L(n,2) = n(n + 1)/2. Unfortunately, not too many examples
where N(n,k) = L(n, k) holds, are known. In fact, they do not exist for
k > 5,n > 2. So we have to be satisfied with examples where N(n,k)
does not deviate too much from the lower bound. In the complex case, the
almost extremal number of equiangular vectors constructed in the proof of
Proposition 2 provides an example for k = 2, K = C. Here N = n?+ 1 while
L(n,2) =n?:

Proposition 10. Let n = p! + 1 be a prime power plus one. Then there
exists a complex isometric imbedding I — I3 1.

There are also O (n?)-examples in the real case, cf. [7].

Proof. Let dy,...,dy, be as in Lemma 6 and consider again the M = n?—n+1
vectors

zj t= Y2 exp( B dmi) oy € SH(E) S O

As shown before, they are equiangular, | < zj,z; > | = vVn —1/n for all
1<j#1< M. We would like to check condition (2) of Proposition 8 to get
isometric imbeddings into 1)'; then c,2(C) = n(n+1) Taking p; = 1/M and
the above vectors gives a slightly larger value on the left side of (2) than
cng((C)A However, adding the standard unit vectors eq, ..., e, as the vectors
TM+1y-- TN with N :=n?+1 and letting Wy = n:‘_l AI/! if1 <j< M aswell
as pj = n—+1 if M < j < N, one checks by direct calculation that (2) of
Proposition 8 is satisfied for this slightly larger set of vectors. Interestingly
enough, the y;’s attain 2 different values, although both are of very similar
size. g

For imbeddings into I3, with k > 3 the minimal order of N(n, k) for
n — oo is unknown. A recent result of Kuperberg [12] improves the O
(n?*)-bound to O (n2*~1); it might possibly be strengthened to O (n%-2)
which would also fit with Proposition 10. However, the constants involved in
the O-term are bigger than 1 in Kuperberg’s construction using BCH-codes.
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Weighted norm inequalities for singular
integral operators

J.M. Martell *

Abstract

SEPTEMBER 2003-JUNE 2004

We study weighted norm inequalities for singular integral operators
with different smoothness conditions assumed on the kernels. The
weakest one is the so-called classical Hérmander condition, which is
an L! regularity, and the strongest is given by a Holder or Lipschitz
smoothness. Between them we have some kind of L"-regularity, 1 <
r < oo. We will present some results that are known for singular
integrals with these kernels. We will be focused on studying Coifman’s
inequality:
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/ ITf@)Pw)de < C [ Mf@)P w)de,

R Rn

for any 0 < p < oo and w € Ay, where T is a singular integral oper-
ator with kernel satisfying a Holder regularity condition and M is the
Hardy-Littlewood maximal function. We will see that such an inequal-
ity is no longer true when the hypotheses on the kernel are relaxed.
This is the case for kernels satisfying the Hormander condition. For
the intermediate regularity conditions some positive and negative re-
sults of this kind are shown. In these cases the operator on the right
hand side is changed in such a way that it can measure the singularity
of T. Some of the results we will present are in a collaboration paper
with Carlos Pérez and Rodrigo Trujillo-Gonzalez.

1 Introduction.

Some of the most significant and studied operators in Harmonic Analysis
are the Hardy-Littlewood maximal function, the Hilbert transform and the
Riesz transforms. The first one is defined as the supremum of the averages of

*Partially supported by MCYT Grant BFM2001-0189
2000 Mathematics Subject Classification. Primary 42B20, 42B25.
Key words and phrases. Calder6n-Zygmund singular integral operators, Muckenhoupt
weights, maximal functions.
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the function over all the cubes @ C R™ (with sides parallel to the coordinate
axes in the sequel), that is,

Mf(z)=2%pﬁ/@|f(y)|dy-

The Hilbert transform is defined in R and the Riesz transforms are the
analogs in R, n > 2, and they are given in the following way

_ f(y) ) _ Ti —Yj
Hi@ =po. [ T a, Rifte) =po. [ =l )y,

These integrals have to be defined in such a way they make sense. Note that
the kernels 1/z in R or z;/|z|"*! in R, n > 2, are singular and they are
not locally integrable at the origin and this is the reason why the integrals
are understood in a principal value sense. The Hardy-Littlewood maximal
function is very related to Hilbert or Riesz transforms since it controls them
as we will see later. Studying maximal operators turns out to be easier and
this control might be crucial to understand the singular integral operators.

A generalization of the Hilbert or Riesz transforms is given by the fol-
lowing convolution type operators

Tfw) = po. [ Kla =) f)dy

with kernel K having bounded Fourier transform K e L>®(R"). Thus, T
is a linear and bounded operator on L?(R"). Further generalizations can
be considered with two-variable kernels that do not give a convolution type
operator and some of them play an important role in Analysis. Nevertheless,
we are going to concentrate in the simplest case on which the operators are
of convolution type, the reader is referred, for instance, to [5] for the general
case.

Coming back to the singular integral operators defined above, so far we
only know that they are continuous in L?(R"). To get better properties on
T some conditions can be imposed about the size or the smoothness of K.
The size condition of the kernel that generalizes the case of the Hilbert or
Riesz transforms is |K(z)| < A|z|™". Note that this decay has a problem
of integrability both at the origin and at infinity. For the operators that we
want to consider this condition will not be assumed, we will be focused on
different smoothness conditions on K and the results that can be achieved
by assuming them. The regularity conditions will be scaled in the Lebesgue
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spaces and we will use the notation H,, 1 < r < co. The weakest one is the
so-called Hérmander condition

sup / K(z - y) - K(z)|dz < o0, (H)
YyER™ Jiz|>c |yl

which is understood as an L!-regularity. A singular integral operator with
kernel satisfying (H;) is of weak type (1,1) and bounded on LP(R"), 1 <
p < oo. This a classical result obtained by Calderén and Zygmund in the
50’s, see [2]. The main tool for this proof is the Calderén-Zygmund decom-
position of the function into a good and a bad part. This decomposition is
performed by means of the Hardy-Littlewood maximal operator, fact that
reflects the connection between this maximal function and the singular in-
tegral operators.

If (H1) is the weakest regularity assumption, the strongest one will be
of Holder or Lipschitz type, namely,

ly[*
|I|a+n’

|[K(z—y)—K(z)| < C whenever |z| > cly|, (HX)
for some ¢ > 1 and 0 < a < 1. The reason why we have used (HZ)
rather than (Hu) will be clear later —we keep this latter notation for an
L condition that is weaker—. Note that this condition implies (H;) and
also that the kernels of the Hilbert or Riesz transforms satisfy (HJ) with
¢ =2 and a = 1. Indeed, they verify an estimate that is better: |[VK(z)| <
Alz|~(*D), We will see after a while that (HZ) is key when weighted norm
inequalities are studied.

Between (H;) and (HZ) the following variant of the Hormander condi-
tion can be considered: let 1 < r < oo, we say that the kernel K verifies
the L"-H6rmander condition, if there are ¢, C, > 0 such that for any y € R"
and R > cly|

S @ R)? (/ Kz~ y) - K@) )" <Cp,  (Hy)
ot 2m Refe|<2m+ R

in the case r < oo, and

(™R sup |K(z —y) — K(z)| < Cc, (Hso)
1 2m R<|z|<2m+l R

M8

3
I

when 7 = co. We will use the notation (H,) for the previous conditions and
H, for the classes of kernels satisfying them, the same is applied to (HZ).
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This definition is implicit in the work of D. Kurtz and R. Wheeden (8],
where it is shown that the classical Dini condition for K implies that K € H,.
(see [8, p. 359]). Later on, these classes H, were considered in [12] and [13].
In fact, in this last paper the L"-Hormander condition plays an essential
role when studying rough singular integral operators. Namely, for such an
operator T', one can write T = > T; where the kernel of T; satisfies the
L"-Hoérmander condition with constant growing linearly in j.

Our aim is twofold. Firstly, we will review the weighted norm estimates
that are known for the singular integral operators with the kernels in the
previous classes. We will study how sharp they are. Secondly, we present
some lack of weighted norm inequalities when the kernels are less regular.
In particular, for K € H; we are going to provide some counterexamples on
which the expected weighted norm inequalities do not hold. To prove these
negative results we will use some extrapolation results taken from [4].

The source of this presentation is the paper [10] written in collaboration
with C. Pérez and R. Trujillo-Gonzélez to whom the author wants to express
his gratitude.

2 Weighted norm inequalities and Coifman’s type
estimates

In what follows a weight w is a non-negative locally integrable func-
tion. As usual LP(w) will denote the LP space with the underlying measure
w(z)dz.

Muckenhoupt in [11] found some classes of weights when he characterized
the boundedness of the Hardy-Littlewood maximal function in weighted
Lebesgue spaces. The classes A,, 1 < p < 00, are defined as

(%{ /Qw(z) d) (ﬁ /Qw(z)l-f” d)" " <C<oo forp>1, (4))

ﬁ /Qw(z) dz < Cw(z), for a.e. z € Q. (A1)

The class A; can be equivalently defined as Mw(z) < Cw(z) a.e. We also
remind that Ao = {J,>; Ap. The result proved in [11] establishes that M
maps L!(w) into L1 (w) if and only if w € A; and that w is bounded on
LP(w), 1 < p < o0, if and only if w € A4,.
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On the other hand, Coifman’s inequality, see [3], states a precise control
of Calderén-Zygmund operators T with kernel K € HX in terms of M:

/ ITf(z)Pw(z)de < C / M f(z)P w(z)dz, (©)
IRTL Rﬂ

for any 0 < p < 0o and w € Ay. Thus, we can get, for instance, that T
is bounded on LP(w) for w € Ap, p > 1. Similar estimates hold replacing
the LP(w) norms in both sides by the weak norms in L»*(w) which, for
p = 1, yields that T : L}(w) — L»®(w) for w € A;. Coifman proved
(C) by establishing a good-) inequality relating T and M. There is an-
other approach using the sharp maximal function (see [1] for details of this
technique). Recall that

1
M? f(z) = sup = - fold
@) = s ar [ 176 - falds,
where fg stands for the average of f over Q, and that
MY f(z) = M#(|f1°)(@)"°.

Then, for T' with K € H} we have the pointwise estimate Mé#(Tf)(a:) <
Cs M f(z), 0 < < 1. This fact plus Fefferman-Stein inequality for M and
M# (proved as well by means of a good-) inequality) also yield Coifman’s
inequality (C). There is still another approach with no use at all of the
good-\ technique, this way combines ideas from [9] and [4], we will give
more details later.

When K is less regular, say K € H, for 1 < r < oo, some substitutes
of (C) arise. Now the operator is worse and it is expectable to get a bigger
maximal function on the right hand side. Let us set M, f(z) = M(\f|q)(z)1/q
and note that M f(z) < M, f(z) for 1 < g < oo. In [12], [13] we can find the
pointwise estimate M# (T f)(z) < ¢, My f(z) whenever K € H,,1 < r < 00.
Then, the following Coifman’s type inequality holds

/ TP wle)ds <O [ MofP ule)ds (1)
R® R»

for any 0 < p < o0 and w € A. As a direct consequence, we have that
T is bounded on LP(w), if w € A, for r < p < oo, orif w™? e Ap
forl <p<r orifuw’ e Ap for 1 < p < co. The case p = 7’ follows by
interpolation with change of measure and by the reverse Holder property
(see [12] for more details).
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When T is a singular integral operator with kernel in the class H,
then we get (C), or what is the same, (1) with M in place of M,». As a
consequence, T is bounded on LP(w) for w € Ap, 1 < p < oo. In this
case the proof of (C) is also obtained by proving the pointwise estimate
M(;#(Tf)(x) < CsMf(z), 0 < é < 1. For more examples of this kind the
reader is referred to [1]. We remark that this gives an improvement of (C)
since, as we noted, H’ C Hs. An explicit example can be easily adapted
from the proof of Theorem 7 by taking K = xp, (o) € He but it is not in
HX.

These positive results drive us to the following questions:

e Is it possible to get similar estimates for r = 1, in other words, what
kind of weighted estimates can be proved when the kernel is in H;?

e For 1 < r < oo, can we replace M, in (1) by the pointwise smaller
operator M; with 1 <t < r'?

e Is the operator T' bounded on LP(w) for every 1 < p < oo and for
every w € Ap or, even more, for w € A;?

We are going to show that the answer to each of the above questions is
negative.

3 Extrapolation for A, weights

One of the main ingredients to negatively answer the latter questions will
be some extrapolation results taken from [4]. We will see that to disprove
(C) or (1), or their weak type-weak type analogs, it suffices to show that
they fail for just one exponent py.

In what follows G and S are two operators defined on some class of
smooth functions S such that Gf > 0, Sf > 0 for f € S. When we write
an estimate like

IGSfllze(w) < ClSSFllLew), )

we always understand that it holds for any f € S such that the left hand side
is finite and that C' depends only upon the A constant of w and p. We are
not assuming any linearity or sublinearity on the operators, the only thing
we need is that they are reasonably defined: Gf and Sf are measurable
functions for any f € S. Indeed, one can formulate the result in terms of
pairs of functions since the operators play no role. This is the approach
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used in [4] and its generality is extensively used there to deal with several
implications, among them we remark those vector-valued that arise almost
automatically.

Theorem 1 ([4]). Let G, S be as above. Consider the following estimates:
(@) IGfllLro(w) < C IS fllLro(w), for some 0 < pyg < 00 and all w € Ax.
() G fllLr(w) < CUISfllLr(w), for all0 < p < oc and all w € An.

(@) G fliLrw)y < CISSfliLr(w), for all 0 < p < po, for some po, and all
wE Ap.

(@) IGfllLro-c(w) < CISfllLro-(w), for some 0 < py < oo and all w €

oo-
(€) IGfllroqw) < C IS fllLroe(w), for some 0 <p < oo and all w € Ax.
Then,
(a) <= (b) <= (c) = (e) and (d) <= (e).

The reader is referred to the original source [4] for a complete account
of this technique and also for a great deal of examples that can be used to
exploit the latter result.

4 Negative results

Now we have the ingredients needed to answer the questions posed above.

Theorem 2 ([10]). Let 1 <r < co. There exists a singular integral opera-
tor T with kernel in H, for which the following estimates do not hold:

(i) / T f ()P w(z)dz < c/ My f(2)P w(z)de, for 0 < p < 50, w €
]Rn RTL
A and 1 <t <7/,

(@) ITfllLpooqw) < ClIMefllLroew), for 0 <p< oo, w € A, L <t <7,

(i) /]R ITf(2)P w(z)dz < C /R Mif(2)? Mw(z)dz, for0 < p < 1, w

an arbitrary weight (that is, a non-negative locally integrable function)
and 1 <t<rl.
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(iv) / |Tf(z)]Pw(z)de < C/ |f(z)|Pw(z)dz, where, either 1 < p <
R7 R®
T, we A orl <p<oo,weE Ap.

Remark 3. Note that for kernels satisfying just the classical Hormander
condition (H;), none of the maximal operators M; can be written in the
right hand side of (i), (¢¢) or (ii¢). Observe that no weighted estimate as
(7v) holds even for the best class of weights A;. In short, no weighted
norm estimate is satisfied in general for operators with kernels satisfying
the classical Hormander condition (H;). Some other results in this direction
are given in [6].

Remark 4. As we have just mentioned (H;) is not sufficient for showing
weighted norm inequalities for 7. However, it has recently obtained that
(H,) yields the boundedness of the supremum of the truncated integrals,
see [7].

Remark 5. The estimates in (z) say that both (1) and the pointwise esti-
mate M# (T f)(x) < ¢, My f(zx) are sharp. Note also, that in (iv) the range
of exponents 1 < p < 7’ and w € A; is optimal, since for ' < p < oo and
w € Ay C Apw, T is bounded on LP(w) as mentioned before.

Remark 6. The importance of (ii7) is given by the following argument. A.
Lerner has recently obtained the following estimate

/ ITf(x)Iw(x)dxsc/ M f(z) Mw(zx) dx
R™ Rn

for a singular integral operator T with kernel satisfying (HZ ) and for any
arbitrary weight w. His proof is not based on the good-A technique but
uses the so called local sharp maximal function of F. John. Pushing Lerner
techniques one can get the same estimate with exponents 0 < p < 1. Taking
in particular w € A; which means Mw(z) < Cw(z) we get

/ ITf(z)]Pw(z)de < C / M f(z)? w(z) dz
R" R®

for any 0 < p < 1 and for any w € A;. Applying Theorem 1 to the latter
estimate, which corresponds to (c), we eventually get Coifman’s inequality.
We would like to emphasize that this combination of [9] and [4] has not used
the good-A technique and provides a new proof of (C).

The proof of Theorem 2 will be a consequence of the extrapolation tech-
nique in (4], Theorem 1 above, plus the following negative result for power
weights.
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Theorem 7 ([10]). Let 1 <7 < o0, 1 <p <7/, —n < a < —np/r’ and
wa(z) = |z|*. There exists a singular integral operator T with kernel in H,
for which the following estimate does not hold:

ITfll Lo (wa) < CIFllLowa)- 3)

This negative result should be compared with the following positive re-
sult: let 7, p be as in the theorem and let —np/r’ < a < 0, then the following
estimate holds

1T fllr(w) < C N fllLe(w)s (4)

where w(z) = |z|*. This arises essentially from the results by Watson [13]
using interpolation with change of measures.

Next, we are going to sketch the proof of Theorem 2 and the counterex-
ample for Theorem 7 will be given afterwards.

Proof of Theorem 2. The estimate in (ii¢) with w € A;, that is, with Mw(z) <
Cw(x) a.e., implies (7), since, in Theorem 1, (a) and (c) are equivalent. On
the other hand, by Theorem 1, (¢) yields (i7). So, if we show that (i:) leads
to a contradiction then (¢) and (i#i) have to failed. Furthermore, by the
extrapolation result Theorem 1, it suffices to get some fixed exponent pg
for which the weak type-weak type (i7) does not hold. Fix 1 <t < 7’ and
w € A} C Aw. Then we take any pg such that t < pg < r’. Assume that
(7) holds, then

1
1T fll oo (w)y < ClIM¢fllLroco(wy < C ||1V[(|f\t)||ze§1 ) < CIfllLro w)s

(w
where in the latter estimate we have used that pg/t > 1 and that w € A,
so that M is bounded on L%Q(w). Note that this estimate says that T is
bounded from LP°(w) to LPO*°(w) for any w € A; where 1 < po < 7. In
particular, this estimate holds for the Aj-weight w(z) = |z|® with —n <
a < —npy/r’, contradicting Theorem 7.

It remains to show that (iv) does not hold. When 1 < p < 7’ and w € Ay,
Theorem 7 is contradicted since the weights w, are in A;. In the other case,
1 <p<ooand w € Ap. If the estimate holds for some py and any w € Ay,
then, by the Rubio de Francia extrapolation theorem (see [5, p. 141]), the
estimate will be valid for all 1 < p < co and w € A, which will contradict
again Theorem 7. O

Proof of Theorem 7. We briefly present the counterexample leaving the de-
tails to the reader, (see [10]). Let 8 > 0 and consider the kernel K(z) =
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k(|z|) where

_148

k(t)=t"% (1og ;) " Xow(®)-

Note that K € L"(R"). Take 0 # n € R" far enough from the origin, for
instance |n| = 4. We define the kernel K(z) = K(z —n) and the operator T
as

Tf@) =R+ f0) = [ Kla=n=1) f)dy

Observe that K € L™(R")N L' (R") and hence the operator T is bounded on
L9(R™) for every 1 < g < co. Just by using that K € L"(R") and that it is
supported in the unit ball, we can show that K € H, (see [10]). Note that
when 7 = 1, since K € L'(R"), we automatically have K € H;. Assume
that T maps LP(wg) into LP*°(w,) and take

n —n+e n
0<e< —a==5p and f(@)=lz+nl"7" Xp,(—pl(z) € LPF(R").

If z € B1(—n) then 3 < |z| < 5 and therefore
1
supAw{z € R": |Tf(z)| > /\}11_’ <C (/ |f(2)|P |z]* dz)"
A>0 R~

<cs3h (/R ]f(x)lpdz>% < 4o0.

The contradiction arises here because one can show that the left hand side
of this estimate is infinity. O

Acknowledgements. The author would like to thank Prof. C. Pérez
for the opportunity of giving the talk contained in this paper, for his hospi-
tality and for many interesting discussions.
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Weighted norm inequalities and
extrapolation

José Maria Martell *
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Abstract

We presente a very general extrapolation principle for weights in the
classes of Muckenhoupt which provides a method to obtain weighted
norm inequalities in Lebesgue and more general function spaces, and
also weighted modular inequalities. Vector-valued estimates are de-
rived almost automatically. We will exploit this technique paying spe-
cial attention to operators that are controlled in weighted Lebesgue
spaces by the Hardy-Littlewood maximal function or, more in general,
by its iterations. This is the case for regular Calderén-Zygmund oper-
ators and their commutators with bounded mean oscillation functions.
We will show that these operators behave as the corresponding maxi-
mal operator that controls them. Some of the results we will present
are in collaboration papers with David Cruz-Uribe and Carlos Pérez,
also with Guillermo Curbera, José Garcia-Cuerva and Carlos Pérez.
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1 Introduction.

We start by introducing some of the needed background. Consider the
Hardy-Littlewood maximal function in R™ defined as

M) = s |?12| /Q £l dy,

where the cubes  C R™ are always considered with their sides parallel to
the coordinate axes. This operator is bounded on LP for every 1 < p < oo
and it maps L! into LY. One can change the underlying measure in
the Lebesgue spaces by introducing a weight w, which is a non-negative

*The author was partially supported by MCYT Grant BFM2001-0189.
2000 Mathematics Subject Classification. 42B20, 42B25, 46E30, 42B35
Key words and phrases. Extrapolation of weighted norm inequalities, rearrangement
invariant function spaces, modular inequalities, maximal functions, singular integrals,
commutators.
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measurable locally integrable function. The estimates of M on weighted
Lebesgue spaces LP(w) = LP(w(z)dx) are governed by the Muckenhoupt
conditions, which are defined as follows: we say that w € 4,, 1 < p < oo, if
there exists a constant C' such that for every cube Q C R™ we have

(ﬁ/Qw(x)dx) (ﬁ /Qw(l‘)l‘p’dzyAl <C,

when 1 < p < o0, and, for p =1,
1
— / w(z)dr < Cw(x), for a.e. z € Q.
1Ql Jo

This latter condition can be rewritten in terms of the Hardy-Littlewood
maximal function: w € A; if and only if Mw(z) < Cw(z) for a.e. € R™.
The class A is defined as Ao = U, 4p.

Muckenhoupt in [13] proved that the weighted norm inequalities of the
Hardy-Littlewood maximal function are characterized by the classes Ap,
namely, M maps L!(w) into LV*®(w) if and only if w € A4; and M is
bounded on LP(w), 1 < p < oo, if and only if w € Ap.

Let T be an operator which is defined on some class of nice functions Dr.
Let us point out that nothing else is assumed on T', in particular, 7' does not
have to be linear or quasilinear. We assume that there exists 0 < py < oo
such that M controls T' on LP°(w) for all w € A, that is, for all w € A

/ |Tf(z)P°w(z)dx < C / M f(2)P° w(z) dz, f €Drp, (1)
RTL R"

whenever the left-hand side is finite. The aim of this paper is to show
that from this assumption one can prove that T satisfies weighted norm
inequalities on Lebesgue spaces and function spaces, and weighted modular
inequalities as M does. Besides, all these estimates admit vector-valued
extensions. In other words we are able to show that most of the weighted
estimates that M satisfies can be proved for T. We also see that similar
results are obtained when the operator T is controlled by a given iteration of
the Hardy-Littlewood maximal function. We will apply the results obtained
to Calderén-Zygmund operators with standard kernel which are controlled
by M (see Coifman’s estimate (11)). We will also consider the commutators
of these operators with bounded mean oscillation functions. In this case, the
appropriate operators to be written in the right-hand side are the iterations
of the Hardy-Littlewood maximal functions.
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To work with this kind of estimates we collect the extrapolation results
obtained in [4] and [5]. Before that, we introduce some notation: as men-
tioned, there is no assumption on the operator T and in (1) one can replace
M by any other given operator. In fact, the operators do not need to appear
explicitly and one can work with pairs of functions. In what follows, F is
a family of ordered pairs of non-negative measurable functions (f, g). If we
say that for some pg, 0 < pp < 00, and w € Ay

/f PDw(z)dI<C/ z)P° w(z) dz, (f.9) € F, (2)

we always mean that (2) holds for any (f,g) € F such that the left hand
side is finite, and that the constant C depends only upon p and the A,
constant of w. We will make similar abbreviated statements involving other
function norms or quasi-norms, or even modular type estimates; they will
be always interpreted in the same way. Note that using this notation, (1) is
(2) with F consisting of the pairs (|Tf|, M f) for f € Dr.

In [4] it is shown that starting from (2) one can extrapolate and the
same estimate holds for the full range of exponents 0 < p < oo and for
all w € Ax. In that paper it is also proved that the spaces LP(w) can be
replaced by the Lorentz spaces LP%(w) for all 0 < p < oo and 0 < ¢ < oc.
This was generalized in [5] obtaining that (2) implies estimates on very gen-
eral rearrangement invariant quasi-Banach function spaces (RIQBFS in the
sequel) and also very general weighted modular inequalities. Furthermore,
the fact that one can work with general families F allows one to prove,
in an almost automatic way, that all these estimates extend to sequence-
valued functions. The next result collects all these extrapolation results.
The needed background is collected in Section 2.

Theorem 1 ([4], [5]). Let F be a family of ordered pairs of non-negative,
measurable functions (f,g). Assume that there exists 0 < pp < oo such that

/f Powz)dz<C/ P w(z)de, (f.g)eF,  (3)

for all w € Aw and whenever the left-hand side is finite. Then, for all
(f,9) € F and all {(fj,9;)}; C F we have the following estimates:

(a) Lebesgue spaces, [4]: For all 0 < p,q < 00 and w € A,

i 5 € (te)*

LP(w)

£l < Cllalmar (S 05)7)°
J
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(b) Rearrangement invariant quasi-Banach function spaces, [5]:
Let X be a RIQBFS such that X is p-convex for some 0 < p <1 —
equivalently X" is Banach for some r > 1— and with upper Boyd index
gx < 00. Then for all 0 < ¢ < 0o and w € Ay we have

X(w) ¢ H(zj:(gj)q)a

(¢) Modular inequalities, [5]: Let ¢ € ® with ¢ € Ag and suppose that
there exrist some exponents 0 < r,s < oo such that ¢(t")° is quasi-
convex. Then for all0 < ¢ < 0o and all w € Ax,

/nq&(f(x))w(x)dx c/ 9(2)) w(z) dz,

/((Zf] )) z)dz C/Rn¢< Zgj(z)q)) 2)de,

Furthermore, for X as before one can also get that ¢(f) is controlled
by ¢(g) on X(w). In particular, taking X = L1 we have the following
weak-type modular inequalities

sup«b(/\) w{z: f(z) >} < C s§p¢(/\) w{z: g(z) > A},

sup 602 {(Zf](x) Y CAH¢((2jjgj(z)Q)%)w(z)dz,

for allw € Ay

1wy < C gl H(Z(fj)qf %)’
J

IN

IN

IA

We will use this result starting with (1) which will allow us to obtain
inequalities for T" using those that are known for M. The advantage of this
method is that once (1) is known, no property of T is used and everything
reduces to prove estimates for M.

The plan of the paper is as follows. The next section is devoted to
introduce the needed background. In Section 3 we study those operators
that satisfy (1): we will present a collection of weighted estimates for the
Hardy-Littlewood maximal function to show that 7' behaves in the same
way. Finally, in Section 4 we consider operators with a higher degree of
singularity in the sense that the operator appearing in the right hand side
of (1) is an iteration of the Hardy-Littlewood maximal function. We will
establish weighted estimates for T as a consequence of the extrapolation
results. We will pay special attention to those estimates near L!.
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2 Preliminaries

In this section we present the needed background.

2.1 Basics on Function Spaces

We collect several basic facts about rearrangement invariant quasi-Banach
function spaces (RIQBFS). We start with the Banach case. For a complete
account the reader is referred to [1]. Let (9, Z, 1) be a o-finite non-atomic
measure space. We write M for the set of measurable functions and M™
for the non-negative ones. Given a Banach function norm p we the Banach
function space X = X(p) as

X={feM: |flx=p(f) <oo}.

The associate space of X is the space X’ defined by the Banach function
norm p':

p/(f)=sup{/ﬂfgdur geM*t, p(g) < 1}~

Note that, by definition, it follows that for all f € X, g € X’ the following
generalized Holder’s inequality holds:

/n \Faldu < £l gl

The distribution function ps of a measurable function f is
wN) =pfe e Q: 1f@]> A}, A0

A Banach function space X is rearrangement invariant if p(f) = p(g) for
every pair of functions f, g which are equimeasurable, that is, uy = pg. In
this case, we say that the Banach function space X = X(p) is rearrangement
invariant. It follows that X’ is also rearrangement invariant. The decreasing
rearrangement of f is the function f* defined on [0, 00) by

fr@) =inf{r>0: pus(\) < t}, t>0.
The main property of f* is that it is equimeasurable with f, that is,
p{reQ: |f(@)| > A} =[{t e RY: f*(t) > A}|.

This allows one to obtain a representation of X on the measure space (R*, dt).
That is, there exists a RIBFS X over (R*, dt) such that f € X if and only if
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f* €X, and in this case ||f||x = ||f*|lx (Luxemburg’s representation theo-
rem, see [1, p. 62]). Furthermore, the associate space X’ of X is represented
in the same way by the associate space X of X, and so fllser = ¥ Ml

From now on let X be rearrangement invariant Banach function spaces
(RIBFS) in (R",dz) and let X be its corresponding RIBFS in (R*,¢).

Next, we define the Boyd indices of X, which are closely related to some
interpolation properties, see [1, Ch. 3] for more details. First we introduce
the dilation operator

Dif(s) = f(s/t), 0<t<oo, feX,

and its norm hx(t) = ||D¢ll5x, where B(X) denotes the space of bounded

linear operators on X. Then, the lower and upper Boyd indices are defined
respectively by

- lim logt su logt
px =% log hx(t) 1<t<poo log hx(t)’
logt . log ¢
ax . £

Fase log hx(t) 0dt<1 log hx(t)

We have that 1 < px < gx < oo. The relationship between the Boyd indices
of X and X' is the following: px' = (gx)’ and gx = (px)’, where, as usual, p
and p’ are conjugate exponents.

Take w an Ao-weight on R™. We use the standard notation w(E) =
Jgw(z)dz. The distribution function and the decreasing rearrangement
with respect to w are given by

wy(A) = w{:r eR™: |f(z)| > )\}; fu(t) = inf{)\ >0: wp(X) < t}.
We define the weighted version of the space X:
X(w) = {f e M: ||f5lix < o0},

and the norm associated to it ||f|lxw) = |l fallx.- By construction X(w) is
a Banach function space built over M(R",w(z)dz). By doing the same
procedure with the associate spaces we can see that the associate space
X(w)’ coincides with the weighted space X'(w).

Given a Banach function space X, for each 0 < r < oo, as in [7], we
define

XM ={feM: |fIr eX}={feM: |flx =I5}
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Note that this notation is natural for the Lebesgue spaces since L" coincides
with (LY)". If X is a RIBFS and r > 1 then, X" still is a RIBFS but, in
general, for 0 < r < 1, the space X" is not necessarily Banach. Note that
in the same way we can also define powers of weighted spaces and we have
(X(w))" = X" (w).

In this paper we work with spaces X so that X = Y* for some RIBFS Y
and some 0 < s < oo. The space X is in particular a rearrangement quasi-
Banach space (RIQBFS in the sequel), see [6] or [12] for more details. Let
us observe that another equivalent approach consists in introducing first the
quasi-Banach case and then one restricts the attention to those RIQBFS for
which a large power is a Banach space. This latter property turns out to be
equivalent to the fact that the RIQBFS X is p-convex for some 0 < p < 1,
that is, there exists C such that for all N > 1 and fi, -+, fy € X, all

N 1 N 1
(S usr) |, < e (i)
j=1 j=1

1
In this case, after renorming if necessary, one has that X» is a RIBFS.
Regarding the statement of Theorem 1 we have to make several remarks.

Remark 2. Note that in (b) of Theorem 1 we have restricted ourselves to the
case of X p-convex with gx < co. As we have just mentioned, this means that
X" is a Banach space (with r = 1/p). Thus, by Lorentz-Shimogaki’s theorem
(see [11], [16] and [1, p. 54]) gx < oo is equivalent to the boundedness of
the Hardy-Littlewood maximal function on (X")’.

Remark 3. Theorem 1 part (b) can be equivalently formulated in terms
of RIBFS rather than quasi-Banach spaces. The conclusion would be as
follows:

Then, for all RIBFS X such that gx < oo —or equivalently, that
the Hardy-Littlewood mazimal function is bounded on X'—, all
p such that 0 < p < oo, and all w € A, we have

1 fllxp(w) < C ligllxe ) (fr9) € F,
and the corresponding vector-valued inequalities also hold.
The equivalence is based on the fact that if Y = X" then gy = r - gx.

Remark 4. The formulation given in (b) of Theorem 1 and the equivalent
one presented in the previous remark reflect that there are two different
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points of view: suppose that one wants to get estlmates in L?. The first
formulation consists in looking at the RIQBFS X = L? which has the prop-
erty that X2 = L! is a Banach space. This convexity allows us to apply
Theorem 1 to X. Alternatively one can start from X = L! which is a RIBFS
and by the second formulatlon get estimates in XP for all 0 < p < oo, and
in particular in Xz = L3,

Some examples of RIQBFS are Lebesgue spaces, classical Lorentz spaces,
Lorentz A-spaces, Orlicz spaces, Marcinkiewicz spaces, etc, see [5] for more
details. In some of these examples, the Boyd indices can be computed
very easily, for instance if X is LP, LP9, LP(log L)* or LP9(log L)* (where
0<p<oo,0<qg<oo,ac€R)then px = gx = p. In this cases, it is easy
to compute the powers of X and one obtains

(LPayr = IPma, (LP9(log L))" = LP™"(log L)°,

note the same applies to LP = LPP and LP(log L)® = LPP(log L)*.

2.2 Basics on modular inequalities

We introduce some notation, the terminology used is taken from [9]
and [15]. Let ® be the set of functions ¢ : [0,00) — [0,00) which are
nonnegative, increasing and such that ¢(0%) = 0 and ¢(0c0) = 00. If ¢ € ®
is convex we say that ¢ is a Young function. An N-function (from nice
Young function) ¢ is a Young function such that

t
lim m=O and lim M=oo
t—ot t t—oo t
The function ¢ € @ is said to be quasi-convex if there exists a convex
function ¢ and a > 1 such that

é(t) < ¢(t) <aglat), t>0. (4)

We say that ¢ € ® satisfies the Ay condition, we will write ¢ € Ao, if ¢ is
doubling, that is, if
#(2t) < C 4(t), t>0.

Given ¢ € ® we define the complementary function ¢ by

@(s) = sup{st — ¢(t)}, s> 0.
t>0
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By definition we have Young’s inequality
st <¢(s)+ (1),  s,t>0. (5)

When ¢ is an N-function, then ¢ is an N-function too, and we have the
following

t<o i) ‘(t)<2t, t>0. (6)
The lower and upper dilation indices of ¢ € ® are defined respectively by

log hy(t) . log hy(t) log hy(t) inf log hy(t)

ip= 1 LIy = 2N ;
¢ ti%l+ logt o<t<1 logt ¢ t—lglo logt I<t<oo logt
where o(s)
S
hg(t) = sup , t>0,
o) =305

see [10] and [9]. Observe that 0 < iy < I, < co. It is easy to see that if ¢
is quasi-convex, then is > 1. If ¢ is an N-function, then we have that the
indices for ¢ and ¢ satisfy the following: iz = (I4)" and Iz = (iy)".

These indices give, among other things, information about the growth
of ¢ in terms of power functions. Indeed, if 0 < iy < Iy < 00, given ¢ small
enough, we have for all t > 0

d(At) < CoMetEg(t), for A>1,
d(At) < Ce AT (1), for A<1.

It is clear then, that ¢ € Ay if and only if I < oo.

Remark 5. We would like to stress the analogy between the hypotheses of
Theorem 1 parts (b) and (c). The facts that X" is Banach for some r > 1
and ¢(t")® is quasi-convex for some 0 < 7, s < co play the same role. Indeed
in the proofs these properties are used to ensure the existence of a dual
space and a complementary function which allow one to perform a duality
argument in both cases. On the other hand, in (b) one assumes that gx < co
and in (c) it is supposed that ¢ € Ay which, as mentioned, means I < 0.
So, in both cases, we are assuming the finiteness of the upper indices. In
the proofs, these conditions are used to assure that the Hardy-Littlewood
maximal function is bounded on the dual of X" and also it satisfies a modular
inequality with respect to the complementary function of ¢(t")*.

Remark 6. As in Remark 3, one can reformulate part (¢) in Theorem 1 in
the following way: one can start with an N-function ¢ such that I < oo, or



equivalently, M satisfies a modular inequality with respect to ¢, and then
get weighted modular inequalities with respect to the functions ¢(t")* for
all0 < r,s < 0.

Some examples to whom these results can be applied are ¢(t) = ¢,
B(t) = t? (1+log* t)e, ¢(t) = tP (1 +log™ ) (1 +log™ log* t)? with 0 < p <
oo and o, 3 € R. In all these cases one can see that iy = Iy = p and also
that ¢(¢") is quasi-convex for r large enough.

3 Operators controlled by the Hardy-Littlewood
maximal function

SEPTEMBER 2003-JUNE 2004

We are going to apply Theorem 1 to (1) in order to get all those inequal-
ities for the pairs (|Tf|, M f). Then next goal consists in proving weighted
norm inequalities for T as a consequence of the ones known for M.

We already know that M maps LP(w) into LP(w) forallw € Ay, 1 <p <
o0, and LV*®(w) into L'(w) for all w € A;. Regarding the vector-valued
inequalities it is also known that M satisfies the corresponding ¢9-valued
weighted estimates for 1 < ¢ < co. In order to show that M satisfies vector-
valued estimates on RIQBFS or of modular type we will use the following
inequality, see [5]: if 1 < ¢ < oo, we have for all 0 < p < 00, and all w € A

(S, <clar((Sia))

This allows us to use Theorem 1 with the pairs given by this estimate and
therefore the vector-valued inequalities for M follows from its scalar esti-
mates. Next, we collect the weighted vector-valued inequalities obtained for
M by this method:

Theorem 7. Let X be a RIQBFS which is p-convex for some p > 0 and let
¢ € ® be a quasi-convex function.

PROCEEDINGS, UNIVERSITIES OF MALAGA AND SEVILLE (SPAIN)
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(1) If1 < px < oo, for all w € Ay, we have
1M fllxw) < C I llxw)- (8)

(11) If 1 < px < gx < oo we have that for all 1 < g < oo and for all w € Ay,
M satisfies the following weighted vector-valued inequality

(o), =el(S )

(9)

X(w)'
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(#i7) For allw € A;

igs

IN

/" ¢(Mf(z)) w(z) dz

sup ¢()\)w{z Mf(z) > )\}

¢ [ sCh@hu@a, i1<ios.
R™

IA

C/ o(Clf@))w(z)dz, ifiy=1.
]Rn

() If ¢ € Ag (or, what is the same, Iy < ), for all1 < g < o0, M satisfies

the following vector-valued weighted modular inequalities: for allw € A;,,

/Rncb((zjjzwfj(z)Q)ﬁ) dz<C/ ( I z)|q) )w(x)dz,

if 1 <iy < 00, and if iy = 1 we have the weak-type modular inequality
1 1
sup ¢(A { (ijf](x ">A}<c/ ( Z|fj(a:)|q)q)w(z)d;t

Remark 8. This result can be seen as an extension of the classical Theorem
of Lorentz-Shimogaki (see [11], [16] and [1, p. 54]) which states that the
Hardy-Littlewood maximal function is bounded on a RIBFS X if and only if
px > 1. Note that Theorem 7 contains weighted, vector-valued and modular
extensions of this result.

Remark 9. Asin Remark 5 one can see the analogy between the hypotheses
of parts (¢), (i¢) and respectively (ii7) and (iv). Note, for instance, that
we have obtained weighted vector-valued inequalities for M on X provided
1 < px <gx < oo and w € Ap,. Analogously, M satisfies strong weighted
modular inequalities with respecto to ¢ whenever 1 < i4 < Iy < co. Note
that this same comment applies to Corollaries 10 and 13 below.

The proof of Theorem 7 can be found in [5]. The first part is obtained
directly, while (i) follows by (i) and by extrapolation applying (b) in Theo-
rem 1 to (7). Part (i77) can be proved directly using the convexity properties
of ¢. This inequality was first consider in (8] under slightly hypotheses, see
also [9]. Part (iv) can be shown as before from (4i¢) and by applying (c) in
Theorem 1 to (7). Similar results are proved by different methods in [9].

The following result shows that if T satisfies (1), then T behaves as the
Hardy-Littlewood maximal function in terms of the weighted estimates.
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Corollary 10. Let T be an operator defined in some class of nice functions
Dr. Assume that there is 0 < pg < oo such that

/ ITf(z)P° w(z)de < C / Mf@)w(z)dze, feDr  (10)
]Rn ]Rn

for all w € A and whenever the left-hand side is finite. Then the pairs
(ITfl,Mf), for f € Dr, satisfy all the estimates contained in Theorem 1.
Hence, for all1 < p,q < o0 and all w € A,

Lp(w)

1T flw < Cllimcare ||( 1751 . c|(Z i)’
J J

Ifwe Ay and 1 < g < 0o we have

1 1
1Tl < Cllfllzrca | (Ejj T5)* ey < © H(Ejj 1£17)°
Furthermore, let X be a RIQBFS such that X is p-convex for some 0 < p < 1
and such that 1 < px < gx < oo. Then, T satisfies (8) and (9). On the
other hand, let ¢ € ® be a quasi-conver function such that ¢ € Ag, (or, what
is the same, Iy < 00). Then, T satisfies the weighted modular inequalities
contained in (iit) and (iv) of Theorem 7.

Li(w)’

Remark 11. This result extends the classical Theorem of Boyd (see [2] and
[1, p. 154]) on which it is obtained that the Hilbert transform is bounded
on a RIBFS X if and only if 1 < px < gx < co. As we see below, Coifman’s
inequality (11) implies that the Hilbert transform satisfies (10) and so all
the weighted estimates in Corollary 10 hold. Furthermore, any Calderén-
Zygmund operator can be controlled by the Hardy-Littlewood maximal func-
tion (see (11) below) and therefore we obtain this family of weighted esti-
mates for this class of operators. Thus, we are extending Boyd’s result in the
way that the class of operators is wider, we get weighted estimates, modular
inequalities and also all of them admit vector-valued versions.

Remark 12. In addition to the previous remark, notice that Corollary 10
can be applied to operators which are not necessarily linear or quasilinear,
this means that the general interpolation results can not be used. Thus, it is
not clear how to get estimates on RIQBFS following the classical ways (see
(1]). The idea behind this latter comment is that estimates for T are proved
through M, for which classical interpolation results can be employed. On the
other hand, it should be pointed out that it is not clear how to interpolate
between estimates like (10) —even if the operator T is linear— since M
appears in the right-hand side.
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Corollary 10 follows directly from Theorem 1 applied to (10) and then
by using the weighted estimates for the Hardy-Littlewood maximal function
contained in Theorem 7. For the estimates in L* one can apply (b) in
Theorem 1 with X = L and then employ the well known weak type
vector-valued inequalities for M. Another possible way consists in taking
¢(A) = X for which i5 = 1 and then one can use (4ii) and (iv) in Theorem
7 with T in place of M.

The main example of operators satisfying (10) is given by Calderén-
Zygmund operators T which are bounded linear operators on L? such that

Tf(@)= [ K@y)f@)dy,  forae x¢suppf

where the kernel K satisfies the standard estimates
A
K(z,y)| £ —
R T

and

ly—y'I

|K(I,y)—K(.’I},y/)l-HK(y,I)—K(yl,:E)l <A W’

lz—yl > 2|y-y/|,
for some A, 7 > 0. These operators satisfy Coifman’s inequality, see [3]:

/ |Tf(:v)|"w(z)dz§C/ Mf(@)P w(z)de (11)
R® R®

for all 0 < p < oo and all w € Ay and all f € C§° such that the left
hand-side is finite. This means that we can apply Corollary 10 obtaining all
the weighted estimates contained there.

4 Operators controlled by iterations of the Hardy-
Littlewood maximal function

In this section we consider operators that are controlled by iterations of
the Hardy-Littlewood maximal function. Suppose that we have as before
some operator T defined in D7 such that there exists 0 < pg < oo and for
all w € A,

/ ITF (@) w(z) dz < C / M™ (@ w(z)dz,  feDr, (12)
R™ R»
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whenever the left-hand side is finite and where M™*1! is the Hardy-Littlewood
maximal operator iterated m+1-times with m > 1 (note that the case m = 0
was considered in the previous section). As done before, this implies that T'
is controlled by M™*! in all the senses of Theorem 1. Note that in terms
of weighted estimates, M™*! and M behave in the same way provided the
space is not “close” to L', that is, M™*+! satisfies all the estimates in The-
orem 7 but the weak-type modular estimates in (4i7) and (iv). This implies
some of the inequalities in Corollary 10 but one has to be careful at the
end-point p = 1. Let us first state the result that one can get as a direct
consequence of the extrapolation technique and we will study later the issues
with the end-point estimates.

Corollary 13. Let T be an operator defined in some class of nice functions
Dr. Assume that there are an integer m > 1 and 0 < pp < oo such that for
allw € A

/ [T f(z)P° w(zx) dng/ M™f(2)Po w(x) da, feDr (13)
R" R"

whenever the left-hand side is finite. Then the pairs (|Tf|, M™*1f), for
f € Dr, satisfy all the estimates contained in Theorem 1. Hence, for all
1<p,g<ooandallweA

Lp(w)

1 1
IT i) < C i)y H(;w)” oy < CH(;LEI")"
Furthermore, let X be a RIQBFS such that X is p-convez for some 0 < p < 1
and such that 1 < px < gx < oo. Then, T satisfies (8) and (9). On the
other hand, let ¢ € ® be a quasi-conver function such that ¢ € Ag, (or, what
is the same, Iy < 00). Then, if 1 <iys < oo, T satisfies the first estimate in
(#it) and the first estimate in (iv) of Theorem 7.

To prove this result we first observe that M™+1 satisfy all these estimates
since M does. Then, using Theorem 1 as in the previous section the proof
is completed.

We now study the behavior of M™+1 near L! to eventually show that
T satisfies the same estimates. In terms of RIQBFS the natural end-point
estimate for the Hardy-Littlewood maximal inequality is the boundedness
of M from L! to LV* which turns out to be also a weak-type modular
inequality. To find the natural spaces and modular inequalities for M™+1,
we first consider the function

t

= t>0,
(1 +logtt)m

<:Om(t)
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which is increasing, quasi-concave (that is, ¢, (t)/t is decreasing) and satis-
fies that m(0%) = 0. We can define the Marcinkiewicz type space M, by
the quasi-norm

1£liz,,, = supom(t) £°(0).

Thus X = Mwm is a RIQBFS such that X" is a Banach space for any r > 1
and px = gx = 1, see [5]. We note that this allows us to use Theorem 1 with
X. This space plays the role of L*> as we see below.

To deal with the modular inequalities we introduce the function

P (t) =t (1 +logt t)™, t>0.

Note that v is an increasing convex function with 1(0%) = 0 and ¢ € As.
For M*+1 we have the following end-point estimates:

Proposition 14. Let m > 1. Then,
M™1: L(log L)™ — M,,,
and
[{z e R*: M™1f(z) > A} < C /]R" Ym (V(—/{EH> dz.
Furthermore, for any w € A; we have the weighted estimates
M™: L(log L)™(w) — M, (w)
and

wi{z €R": M™1f(z) > \} < C /R o (lf(;)l) w(z) dz.

These estimates are the analogs in terms of RIQBFS and modular in-
equalities of the weak type (1,1) of M. As before, we can show that the
operator T satisfies the same estimates.

Corollary 15. Let T be an operator as in Corollary 13 satisfying (13).
Then, for allw € Ay

T : L(log L)™(w) — M, (w)

and

w{z e R": |Tf(z)| >} <C /IRn Pm (@) w(z) dz.
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To prove the first estimate we only need to apply Theorem 1, part (b),
with the pairs (|T'f], M™*1f) for f € Dr and X = M,,,,, and then Proposi-
tion 14. Note that as mentioned X is a RIQBFS with the property that X"
is Banach for every r > 1 and also px = gx = 1. Observe that the class of
weights A; is natural since px = 1.

The modular inequality is not so automatic. Define the function ¢, (t) =
I (l/t) and observe that ¢, € ® is such that ¢, € Ay (indeed, iy, = Iy, =
1) and ¢(t") is quasi-convex for some large r. Then, we can apply (c) in
Theorem 1 with ¢,, and Proposition 14 to obtain

w{z €R™: |Tf(x)] >1} < supd)m(t)w{zeR" |Tf(x)| >t}

IA

C sup pm(t) w{z € R : M™F! f(z) > t}
t

€ supin(®) [ b (Lf") w(z) d

Cswpon(t)m (3) [ vnllf@) uia)de
c / U (1 (2)]) w(z) da, (14)
RT\,

IA

IN

IN

where we have used that 1, is submultiplicative. If the operator T is linear,
(14) implies the desired estimate by homogeneity. Otherwise, we observe
that we have proved this estimate starting from (13) which for any A > 0
implies

with C independent of A\. This induces a new family of pairs of functions
given by (|Tf|/\, M™*1f/)) to whom we can apply (14) to conclude as
desired

w{z e R™: |Tf(x)| > A} <C /]R" Um (L;)') w(z)dz,

where C does not depend on A > 0.

The main example of operators satisfying (13) is given by the commu-
tators of Calderén-Zygmund operators with bounded mean oscillation func-
tions. Let T be a Calderén-Zygmund operator with standard kernel as
before. Let b be a function of bounded mean oscillation, that is,

supi/|b(z)—bQ|dx<oo
o 1@l Jo
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where by stands for the average of b on Q. Then we define the first order
commutator

Cyf(x) = [b,T)f(z) = b(z) Tf(z) - T(b f)(2),

and for m > 2, the m-order commutator CJ"f(z) = [b,C{* '] f(z). In this
way we have

Cr i@ = [ (o) = b)" K@) [, for ne. a ¢ supp .

Note that this definition makes sense for m > 0 and the commutator of order
0 is nothing but 7. The maximal operator that controls the commutator C7*
is M™*1 which is the Hardy-Littlewood maximal function iterated m + 1-
times, namely, in [14] it is shown that

[ icp i@ v <c [t pwp i) de (15)
R" R"

for every 0 < p < oo and w € Ay and all f € C§° such that the left hand-
side is finite. Thus, Corollaries 13 and 15 can be applied and we obtain all
those weighted estimates for Cj".
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Littlewood-Paley-Stein theory for
semigroups and its applications to the
characterization of Banach spaces

Teresa Martinez

Abstract

We study a generalization of the theory of Littlewood-Paley for
semigroups acting on LP-spaces of functions with values in uniformly
convex or uniformly smooth Banach spaces. We characterize, in the
vector-valued context, the validity of the boundedness inequalities for
the generalized Littlewood-Paley g-function, defined for the subordi-
nated Poisson semigroup of a symmetric diffusion semigroup, in terms
of the type and cotype properties of the underlying Banach space. We
see that in the case of the classical Poisson semigroups (in the torus
and in the Euclidean setting), this theory is more satisfactory and eas-
iest to handle, due to the application of the theory of vector-valued
Calderén-Zygmund singular integrals.

1 Introduction

In these notes we give an overview of the results contained in [12] and
[19], and specially of the main techniques involved in their proofs. In fact, we
are not only interested in the study of the geometrical properties of Banach
spaces, but also in the connection and use of the different tools that will
appear: spectral theory, semigroup theory, probability theory, real variable.

Let us recall some very well known facts. Denote by T = [—, 7| the
torus, and let f be a function in L}(T). For notation simplicity, let f also
be its harmonic extension to the whole disc:

16
f(re®) = P« f(6),
where )
1 1—-r
Pf) = -
2m 1+ 72— 2rcosf
2000 Mathematics Subject Classification. 46B20; 42B25,42A61
Key words and phrases. Littlewood-Paley theory, semigroups, uniformly convex or
smooth Banach spaces, vector-valued Calderén-Zygmund operators
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is the Poisson kernel for the disc. The classical Littlewood-Paley g-function
is defined, for f € LP(T), 1 < p < oo as

Gf(H) = (/01 (1= VB, *f(e)”zld_rr)l/z
where
weson=| (525, = (5o r R0 2) )
or’'r 89 )|, or 750
(1)

It is a classical fact that for every p € (1,00), there exist constants ¢ and C'
depending only on p such that

cllflleremy < 1FO]+ IGfoery < CUFlLo)- (2)

If instead of considering scalar-valued functions, we deal with functions tak-
ing values in a Banach space B, the definition of the g-function given above
is still valid, just replacing absolute values by norms in B in (1). In this case,
it is also very well known (see [8] and [15]), that the equivalence (2) holds
if and only if the Banach space is isomorphic to a Hilbert space. However,
one of the inequalities can still hold in non Hilbertian spaces. Thus, when
talking about vector-valued functions, we will be interested in just one of the
inequalities in (2). The results mentioned in this notes are a consequence
of the tight relationship between vector-valued Harmonic Analysis and the
Geometry of Banach spaces. The validity of an inequality for vector-valued
functions often gives a new characterization of a known property of the
spaces, or introduces a new class of them.

2 Lusin type and cotype properties, their connec-
tion with Probability: martingale type and co-
type properties

Let us define, for g € [1,00) and f € L}(T), the classical space of Bochner
integrable functions on T, the generalized “Littlewood-Paley g-function” as

dr >1/q . 3)

1
Guf )= ([ a=nop e seg 12,

Then B is said to be of Lusin cotype ¢ (resp. Lusin type ¢) if there exist
p € (1,00) and a positive constant C such that

1Gaf o < Cllflgery  (resp- I llgery < CUIFO)s + 1Gaf lrery) ).
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It is not difficult to see that if B is of Lusin cotype g (resp. Lusin type
q), then 2 < ¢ < oo (resp. 1 < ¢ < 2). In these notes, we will be mainly
interested in the first inequality. In [12] and [19] the case of the Lusin type
property is also treated.

It is proved in [19] that the definition of cotype property above is inde-
pendent of p, that is, if one of the inequalities above holds for one p € (1, c0),
then so does it for every p € (1,00) (with a different constant depending on
p). Also, it is shown to be equivalent to the boundedness of G, from Lg(T)
into L*°(T), and from H}(T) into L!(T). The main result of [19] states in
particular that a Banach space B is of Lusin cotype ¢ if and only if B is of
martingale cotype ¢ (as defined bellow).

Let (92, F, P) be a probability space and {F,}n>1 be a non-decreasing
sequence of sub-o-fields of F such that F = o(UF,) (such a sequence will
be called a stochastic basis). Given a Banach space B, a sequence f =
{fa}n>1 of B-valued random variables is a B-valued martingale relative to
{Fn} if each f, is an integrable F,-measurable function and E,(fn+1) =
E(fn+11Fn) = fan. En will denote the operator defined as the conditional
expectation to the sub-o-field F,. For every martingale f = {f,}n>1 we
shall denote dif the “increments” of the martingale f: dipf = fix — frk—1,
k >1, fo = 0, in such a way that f, = > p_; dif, dif is Fr-measurable,
integrable and Fy(d41f) =0, k > 1. For a complete account on B-valued
martingales see [4].

A Banach space B is said to be of martingale cotype ¢, 2 < g < oo, or
in short, M-cotype g, if there exist a constant C such that for any B-valued
martingale f = {f,}

ISaslis = || (3 Ianris)” . s cswisizy (4)
n=1 =

Every Banach space is of M-cotype ¢ = oo. The definition (and the
analog for martingale type property) is due to G. Pisier [13]. Non-trivial
M-cotype q < oo is a geometrical property of the space, implying super-
reflexivity, and it happens (this is Pisier’s renorming theorem) if and only
if the space admits an equivalent uniformly convex norm with modulus of
convexity of power type g, see [13], [14]. Pisier, see [13], proved that a
space is of M-cotype ¢ if and only if for every (or, equivalently, for some)
P, 1=<p<oo, [1Sefllpe < ClIf*|lLp, where f*(w) = sup,> [ fn(w)l|5 stands
for Doob’s mazimal function of f. It is also possible to characterize M-
cotype ¢ in terms of the boundedness of S, from L} into L1 (being these
spaces the corresponding ones for martingales), H, 113 into L! and also from
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BMO-type spaces (see also [10] and the references therein for the details).

The proof in [19] of the equivalence between martingale and Lusin cotype
properties uses, on one hand, the connection between the Poisson kernel in
the disc and the law of a certain random variable associated to a Brownian
motion. More precisely, to prove that martingale cotype property implies
Lusin cotype property, it is used that P z(f — ¢) gives the law in the set
VrT of BTW|BT, = ret?, where {Bi}t>0 is a standard Brownian motion in
the disc, and 7, = inf{¢t > 0: |B;| = r}. The proof of the converse is very
technical and involves a careful analysis of G, f for f with a highly lacunar
Fourier series.

An important feature of the proof of the equivalence between Lusin and
martingale cotype properties is that the class of spaces remains unchanged
if we substitute G4 by the “partial” generalized g-functions

1 q 1/q

airo) = ([ |a-nGe-so| ) (5
L1 —rdP, T gy \Ve

o) = ([ |50 Bl_r) ©)

3 Vector-valued singular integrals

To prove the other characterizations of Lusin cotype property, namely,
that the definition given above is independent of p, and that it is equivalent
to the boundedness of G, from Ly(T) into L'*°(T), and from H}(T) into
LY(T), vector-valued Calderén-Zygmund singular integrals are used in [19)].
The key point is that G, can be seen as the norm of a vector-valued Calderén-
Zygmund operator. Let us first of all recall the definition of such an object
(see, for example [7]).

Definition 1. Given B, Be a pair of Banach spaces, let T' be a linear
operator defined in LJ%_ and taking values in the space of Be-valued and
strongly measurable functions on T satisfying

(a) T extends to a bounded operator either from L‘ém (T) into Lde (T) for
some 1 < ¢ < oo, or from L} (T) into Lg>(T),

(b) there exists a L£(Boo,Be)-valued measurable function K, defined in
the complement of the diagonal in T x T, such that for every function
ferLy..

Tf(6) = /T K(6,6)1(¢)do,
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for all § outside the support of f,

(c) the function K satisfies the estimates:

K6, 9)l
106K (6, 0)|| + 10K (6, &) |

for all (6, ¢), 6 # ¢.

In the case of our G, function, we have

Clo— 9|,
clo - o2,

IAIN

v
T:LE — LY, Bu=B  Be= .cyg([/, oo],(ooffv))
and thus
0)=|Tf(6 7
of(0) = [ITf( )IILZ%([O’”.“{_TT)), (7)
where

716) = (1= 1) (5 15 )+ 16)

We have a similar expression for Gé and Gg‘ One can eventually prove that
the kernels of the corresponding operators T satisfy the conditions in Def-
inition 1. For such a kind of operators, a lot is known about their bound-
edness properties and the next one is a cyclic theorem that is intended
to collect the folklore about the boundedness properties of vector-valued
Calder6n-Zygmund operators. In the theorem bellow, the space Hj is de-
fined in the atomic sense. Namely, we say that a function a € L (T) is
an atom if there exists an interval I containing the support of a, and such
that [lal|ze(r) < 1], and [;a(f)d8 = 0. We also consider atoms without
cancellation, which are simply B-valued functions a such that |la(z)|p < 1
(see [2]). Then, we say that a function f is in Hp, if it admits a decom-
position f = Y, Aja;, where a; are B-valued atoms and ), |\;| < oo. We
define [|f||z = inf {3;IAil}, where the infimum runs over all those such
decompos1t10ns Let us also recall that, given a Banach space B the space
BMOg(T) is the space of B-valued functions f defined on the torus such that
| FIBMOr) = SuPr i J; I1£(6) = fills 8, where fr = i [, £(6) d6 and the
supremum is taken over the intervals I C T.

Theorem 2. Let T be a Calderdn-Zygmund operator with an associated
kernel K. Assume that there exists A € L(Boo, Be) such that for all ¢ € Boo
we have T(c)(z) = A(c) for almost every x € T. Let S be defined as S(f) =
IT(f)|lBe- Then, the following statements are equivalent:
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i) The operator T maps L%‘; into BMOBe.
ii) The operator S maps Lg  into BMO.

iii) The operator T maps Héx into L;3e' Equivalently S maps Hllix into
L.

iv) The operatorT maps Li_ into LpE , for any (or equivalently, for some)
p, 1 < p < oo. Equivalently S maps L%m into LP (for any, or for some
p € (1,00)).

v) The operator T maps BMOg_ into BMOg, .
vi) The operator S maps BMOg__ into BMO.

vii) The operator T maps L};x into Lg:o Equivalently, S maps Lgx into
L1,

This theorem is valid in a finite measure space. The case of infinite
measure (such as R" endowed with Lebesgue’s measure) needs some mod-
ifications that we will comment on later. The condition T'(c)(z) = A(c) is
crucial for the proof. If the operator does not verify it, it is very easy to
see that the theorem is false. Consider, for instance T f(z) = g(z)f(z) with
g € L*(T). This operator trivially sends L3(T) into LE(T) and it is clearly
a Calderén-Zygmund operator with kernel K(z,y) = 0. But it is known
(it is a result due to Stegenga, see [16]), that to be bounded in BMO, the
necessary and sufficient condition is that

1 1
— z) —g7ldr < ————  for every I
77 [ lot@) ~arlde < s y

which in particular requires that ¢ €VMO.

The proof of Theorem 2 is completely standard (see, for example [7] and
[9]), and the point where the condition T'(c)(z) = A(c) is used is to obtain
that the boundedness in L? of the operator implies the boundedness in BMO
(see also [12] for the details).

Since clearly P, x ¢ = 1 for every constant function ¢, we have Géc =
ch = Ggc = 0, and we are in the hypothesis of the theorem. Thus, we
obtain the following theorem, that extends the results in [19].

Theorem 3. Given a Banach space, B, and q > 2, the following statements
are equivalent:
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i) B is of Lusin cotype q,
ii) Gq maps LF(T) into BMO(T) boundedly,
i) Gg maps BMOg(T) into BMO(T) boundedly,

The equivalence holds also with the same statements with G}I or Gg in place
of Gg.

4 Another point of view: semigroups

In this section, we introduce another approach to the problem, by using
semigroup theory. For instance, let us observe that with the change of
variables 1 = et in the Poisson kernel of the disc, P;f(f) = P.c * f(6)
is (except, maybe, for a constant), is the subordinated Poisson semigroup
corresponding to the Laplacian in T (82/86%). And the operator G, is
almost the generalized g-function associated to the Laplacian, as will be
defined bellow.

The semigroup associated to the Laplacian in T is an example of a sym-
metric diffusion semigroup. Although it is a well known concept, let us recall
here its definition (see [17], [3], [6] and [20] for a general account on semi-
group theory). These semigroups are collections of linear operators {7;}¢>0
defined on LP(Q,du) for every p, 1 < p < oo, where (Q,du) is any positive
measure space, satisfying the properties of a semigroup

To= Id, TiTs = Tiys, }i_r?é’]}f = fin L? for every f € L%,  (8)

together with the specific conditions of being
e contractions in all LP: || T;f|lp, < || fllps p € [1, 0]
o selfadjoint in L2, T =T,
e Markovian, 7;1 = 1, and
e positive 7y f > 0if f > 0.

The infinitesimal generator of any semigroup 7; acting on some space of
functions X, is the operator A, defined as

Tf-f
t

lim
t—0

= Af
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for f in a suitable dense class of functions (for example, the infinitely
differentiable functions with compact support) in X. If the operator A
is bounded in X, the associated semigroup is given by the formal series
T=et =32, %, which in fact converges in norm. In most cases,
we are interested in unbounded operators A (such as the Laplacian in L2).
The general theory on semigroups states that under certain conditions, for
example if A is closed, densely defined and ||(A — A)71|| < 1/ for every
A > 0, we still have that A is the infinitesimal generator of a semigroup.
Formally, we will denote this semigroup also as 7; = e!4. Formally, then it
holds that 6,7 f = AT, f, Tof = f for f satisfying certain conditions (this
calculation can be made rigurous). For this reason, {7;} is called the heat
semigroup of A.

Let us recall some typical examples of symmetric diffusion semigroups:

Example 4. The most classical exzample of a symmetric diffusion semigroup
is the one generated by the Laplacian in R™, n > 1, with the Lebesque’s
measure. It is well known that the corresponding heat semigroup is given by
the heat kernel,

1) = (@) = i [ s

Observe that the kernel of Ty is a Gaussian density. It is very well known
the connection between semigroups and Markov processes, and in fact what
the expression of Ty says is that, under certain conditions on f, the solution
u(t, x) to the equation Oyu(t,z) = Au(t,z), u(0,z) = fisu(t,z) = Ty f(x) =
E*(f(Bat)), where {B:} is a Brownian motion and the expectation E* is
taken with respect to the law of the Brownian motion started at x. We will
not comment further on this very interesting connection between Probability
and PDE’s and we refer to [5] for a detailed treatment of this topic.

Example 5. Another operator generating a symmetric diffusion semigroup
(see [17]) is the Ornstein- Uhlenbeck operator, A = %A—mv, in (R, dv(z)),
n > 1, where dy(z) = 7="2e=121" 4z is the Gaussian measure. The action
of this semigroup is most commonly expressed as

@) = Mof(o) = = [ Kol i) dy,

t

where 7 = e~ and

1 _ 2
(1 ﬂ)n/?exp(_lyl_:il ) O<r<l

is called the Mehler kernel.

K (z,y) =
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Example 6. An ezample of an operator that generates a semigroup, but not
a symmetric diffusion one (because it is not Markovian) is the Harmonic
Oscillator, A = A — |z)?, in (R",dz).

From the heat semigroup associated to an operator A, we can define a
number of semigroups, which are called subordinated semigroups. We will
be interested in the Poisson subordinated semigroup, which is defined, by
using spectral techniques, as

e~t2/4u

1 [®e™ t o0
Pf = ﬁ/o ﬁﬁ?/atufdu = ﬁ/o Wﬂfdu- (9)

It is easy to see that if {7;} is a symmetric diffusion semigroup, so is {P;},
and with some more effort (see [3]), it can be seen that if 7; = e, then
P = emtV=A, “Heuristically”, this formula can be understood by using
a well known formula for the Gamma function (see the book by Folland,
Introduction to Partial Differential Equations for a proof of it)

1 [Pet g2 1 [®e® _p»
P = _/ S _enfdu= —/ ——e gy = B,
VT lo Vu VT lo Vu

with 3% = t2(—A), which is “positive”. Also, formally we can differentiate
twice in the formula for P; (this calculation can be also made rigourously for
f satisfying certain properties), and see that it satisfies 02P; f + AP, f = 0,
Pof = f, that is, the Laplace equation for A.

Example 7. In particular, in the situation of FExample 4, when A is the
Laplace operator on R™ with the Lebesgue’s measure, P:f(z) should be the
harmonic extension to (0,00) x R™ of f. In fact, it can be proved that

t

Pif(z) = eV Bf(z) = Cn/ Wﬂy) dy

Rfl
where the kernel

Cpt
Pz -y) = (2 + |z — y|2)(n D2

is the Poisson kernel for the upper half space. As in the semigroup of Exam-
ple 4, this kernel is a density, and the process associated to these densities

is the Cauchy process, which is called the subordinated process to Brownian
motion.
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Let us recall that we are interested in defining a generalized g-function for
functions with values in Banach spaces. Since all the operators 7; and P; are
positive bounded operators in LP(2, du), they have a straightforward exten-
sion to L%(Q, du) for every Banach space B, with the same norm. Namely,
let f = Z,’f:l vk be a function in the tensor product B® LV(®, 3, [1), we
define the vector valued extension of the operators as T; f = Zkkzl v Ti k.
This extension verifies, for f in the tensor product, that !|7Zf||Lg < HfHLzé
The boundedness for all functions in L% follows from the density of the
tensor product in LY.

Given a symmetric diffusion semigroup, we define the generalized g-
function associated to it as

q 1/q
& (10)

(@ = ([ H 2|

And in the particular case that the symmetric diffusion semigroup is the one
of Examples 4 and 7, we define

1/q
6@ = ([ 1evee @iy $)"
0
where
9P, 9P, 1/2
169 P £ I]ez—t(—‘*f +3 |Gt ) Sy
=1
and the “partial” generalized g-functions
an dt 1/q
g H 7

62f(@) = ( /0 9P g 2

)1/2

In the case of the Laplacian in the torus, the definition we have given in (5) is
the classical one, although it does not fully coincide with the corresponding
one in (10). This last one, after the change of variables r = e~ gives

C:;f(e):(/o (rlg ) qdr)l/q

B

where

1692P s @)l =t(Z O fa

i=1

OP,
or

* f(z)
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and it can be seen that the boundedness in LP of éq and G are equivalent:
for r far away from 1, the operators are trivially bounded in LP, and for r
close to 1, rlog L ~ 1 — 7 (see [12]).

The following theorem characterizes Lusin cotype property in terms of
the boundedness in L? of &,.

Theorem 8. Given a Banach space, B, and 2 < q < oo, the following
sentences are equivalent:

i) B is of Lusin cotype q.

ii) For every symmetric diffusion semigroup {T;}t>0 with subordinated

semigroup {Pe}e>0, [|8¢f 1l Lr(0,du) < ClIf |18 @.du)s for every (or, equiv-
alently, for some) p € (1,00).

The main ideas of the proof of this theorem are contained in [17]. Proving
that ii) implies i) is easy, since it is enough to consider the generalized g-
function associated to the semigroup 7; = e*® in the torus, and make the
change of variables r = e, to get the boundedness of Gé. Let us sketch the
proof of the converse implication, which is quite interesting by its own right.
It involves three steps (the details can be found in [12]). In the first one, and
by several changes of variables, we reduce the problem of the boundedness
of B, to the boundedness of another “g-function” involving only means of

the operators 7;:
q 1/q
ear <o [ BE| %)

M f(w) = / Tsf(w

The second step takes advantage of this function. By first observing that
for t away from 0 and oo, everything inside is real analytic, we can discretize
the integrals and derivatives appearing in the former expression: for fixed ¢
and m

where

/ aMt fl|7 dt i (ne)t-1 oM, f ¢
€ ot B t’ n=1 ot t=nellB
and
OM, f ]\/[(nﬂ—l)sf - ]Wnsf - 1 s
Jje - 5 T’s )
Ot |imne € "t 1){32 ]go fe ne? jgo sefe
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where the ~ sign means that the LP norms of the terms on both sides are
equivalent. Thus, we get that
)l/q

(=

and our aim is to obtain that the right-hand side of the former inequality
is controlled by || f|| 1, independently of m and e. For this, the third step
identifies, in some sense, the right-hand of the former expression with the
generalized square function of martingales (defined in (4)) of some martin-
gale, and then apply that Lusin cotype and martingale cotype are equivalent
properties of the space. We shall need the following result due to Rota, see
Chapter V of [17]. Let @ be a linear operator on LP((, 3,dy) satisfying the
axioms

i) 1Qflle < |If||ze for every p, 1 < p < oo,

i) Q=Q"in L2,

i) Qf > 0 for every f >0,

iv) Q1 = 1.

Theorem 9. For any Q as above, there exist a measure space (M,F,dm),
a collection of o-fields - -+ C Fpy1 C Fp C --- C F1 C Fo C F, and another
o-algebra F C F such that

a) there exists an isomorphism i : (Q, 8,dp) — (M, F,dm) (which induces
an isomorphism between LP spaces, also denoted by i, i(f)(m) = f(i~'m)),
b) for every f € LP(M,F,dm), we have

QM7 f)(z) = E(En(f))(iz), z€Q
where E(f) = E(f|F) and Eq(f) = E(f|Fn).

n—1

1BgfllLe <

E

Tje
Tl+1j=0 J §73

J=0

This theorem holds in the scalar valued case. For the vector valued case,
the validity of the second statement is a consequence of the extension of
positive contractive operators (as in the argument of page 159). Since we
have symmetric diffusion semigroups, every operator 7, j, with € > 0 verifies
the hypothesis in Theorem 9, and therefore Tje = (T;/2)% = E(-|F;). Calling

Op = 50*;+—TE‘, we have that

n n—1

i 9\ 1/q
18af@)lr cH(Z DI A
= j=0 j=0 B Lp
1/q
< H(an Y(0n = on 1f||3) o
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The last expression is not yet Sgf for some martingale f, but after some
more tedious calculations, we can find the desired S;f and obtain that the
last term is bounded by CpqlIfl| Lz,

5 Characterizations in R"

So far we have seen that the Lusin cotype property of a Banach space
B can be characterized in terms of the boundedness of the generalized g-
function of all the symmetric diffusion semigroups, and also by using just
one of them, the generalized g-function associated to the Laplacian operator
in the torus. The natural question now is wether we can find some more
semigroups with the same property, and the answer is yes: the natural
candidate, the generalized g-function associated to the Laplacian in R", G,
also characterizes the Lusin cotype property, as it is stated in the following
result.

Theorem 10. Given a Banach space, B, and q > 2, the following sentences
are equivalent:

i) B is of Lusin cotype q.

ii) For every, or equivalently, for somen > 1, |Gy fllLewny < C“f”Lg(lR")
for every (or, equivalently, for some) p € (1,00).

i) 1GgfllLrr) < C“f”LZ(lR) for every (or, equivalently, for some) p €
(l’w)‘

The equivalence of the same statements holds for Q‘} or gg in place of Gy.

Remark 11. It is also true that the Lusin cotype property can be charac-
terized in terms of the Ornstein-Uhlenbeck semigroup (see Ezample 5), in
the same way as we have seen in the former theorem for the classical heat
semigroup in R™. Wether non-Markovian semigroups, as the one in Exam-
ple 6, also characterize Lusin cotype property or not, is an open problem

(see [12]).

Let us give the main ideas of the proof of Theorem 10 in the case of g;
(for the other operators the proof is similar). That the first statement implies
the second one is just taking the semigroup associated to the Laplacian in
R™ in Theorem 8. For the rest of the implications, the key point is again
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considering the generalized g-function Q’; in R*, n > 1, as the norm of
certain vector-valued Calderén-Zygmund operator. Namely,

Q;f(x) = HTf(x)”Lg((o,oo),%) (12)

where T is the operator sending B-valued functions defined on (R", dz) into
L%((0,00), 4)-valued functions on (R™,dz), given by
OF,
Ti(@) = 5+ f(@)

The definition of a Calderén-Zygmund operator on R" is similar to the one
given for the case of the torus, see Definition 1: given Bu, Be a pair of
Banach spaces, let T' be a linear operator defined in LYy and taking values
in the space of Be-valued and strongly measurable functions on R™ such that
T extends to a (g, q) strong or weak type operator for some 1 < ¢ < oo, and
such that there exists a £(B, Be)-valued measurable function K, defined
in the complement of the diagonal in R™ x R", such that for every function

felLyg ,Tfly = [gn K(z,9)f(y) dy, for all z outside the support of f,
satlsfymg the estlmates
IK(z, )l < Clz—yl™,
VoK (@, 9)| + VK (z,9)ll < Cle—y|™",  forall z#y.

For these operators, Theorem 2 still holds, although in this new infi-
nite measure setting, it requires some modifications. First, let us recall the
BMOg and H} spaces on R". Let B be a Banach space. BMOg(R™) is the
space of B-valued functions f defined on R™ such that

1
I$1BMOua) = 520 1 /Q (@) - falls dz < oo,

where fg = ﬁ /. 0 f(z) dz and the supremum is taken over the cubes @ C R™
with sides parallel to the axis. The space H, ng is defined in the atomic sense.
Namely, we say that a function a € LF (R™) is a B-atom if there exists a cube
@ C R" containing the support of a, and such that ||a|| g ®&n) < |Q|~!, and
fQ z)dz = 0. Then, we say that a function f is in H3(R") if it admits a
decomposmon f =3, Mia;, where a; are B-valued atoms and Y, || < oo.
We define ”f”Hg = inf { }_;|As|}, where the infimum runs over all those
such decompositions (see [2]).

For operators defined in R™, Theorem 2 still holds when the origin spaces
L and BMO are considered only with functions of compact support. Ben-
net, De Vore and Sharpley (see [1]) proved that for a function in BMO,
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the most classical singular integral operator, the (non centered) maximal
function is, either infinite almost everywhere, or a function in BMO. This
dichotomy holds for many singular integral operators. For the ones we are
handling, it is very easy to see that gg(x(oyw))(z) =o0 aex € R. It is
tedious but not difficult to check that T in (12) is a vector-valued Calderén-
Zygmund operator in R™. Also, it is clear that for any constant c, Q;c(x) =0.
Thus, to prove that statement ii) in Theorem 10 implies statement iii), it is
enough to see that the boundedness from Lg°(R") into BMO(R™) of G} for
n > 1 implies the same boundedness property of the corresponding operator
forn =1.

To this end, consider # = (x2,...,2,) € R*"! and h € L5(R), and
define f(z) = h(rl)x[o)l]",l(;i), wher z = (z1,22,...,&n) € R” The
symmetric diffusion semigroup generated by the Laplacian on R" is given
by convolution with the Gaussian density. Then we have

16 = [ e S

1 loy—u11?
CO/]R @izt " h(y1) dyr = CoT;' h(z1),

where 7;! is the heat kernel in R. If we denote by P} the Poisson semi-
group subordinated to 7;' on R and by P! the Poisson kernel on R, the
formula of the subordinated semigroup (9) implies that P, f(z) = P, f(z) =
CoP}h(z1) = CoP} x h(z1), and therefore Gj f(z) = CoGgh(z1). Now, for
every interval I C R consider @ = I™ the cube in R™ whose sides are the
interval I. Then,

! ! - L 1
@/ngf(w) dz = G /I" CoGgh(z1)dzy ... dzn = Tl /g h(zy) dzy.

Therefore, and also by using similar arguments,
1 / 1 1 1,
= | |Ggf(x) — (Gg f dw— Gah(z1) — (Gyh)1| dxy.
Q] Q|q() (Q)Q| |I| | |
Hence,
1
Hg;h“BMO(R) = a)ng;f”BMO(Rn) < Clfleyp@m = ClhlLy®
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